Virtual Reality Toolbox

For Use with MATLAB® and Simulink®

Computation
Visualization
Programming

Simulation

User’s Guide <4\The MathWorks

Version 4

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Virtual Reality Toolbox User’s Guide
© COPYRIGHT 2001-2006 by HUMUSOFT s.r.o. and The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

August 2001
July 2002
October 2002
June 2004
October 2004
March 2005
April 2005
September 2005
March 2006
September 2006

First printing
Second printing
Online only
Third printing
Fourth printing
Online only
Online only
Online only
Online only
Online only

New for Version 2.0 (Release 12.1)

Revised for Version 3.0 (Release 13)

Revised for Version 3.1 (Release 13)

Revised for Version 4.0 (Release 14)

Revised for Version 4.0.1 (Release 14SP1)
Revised for Version 4.1 (Release 14SP2)
Revised for Version 4.2 (Release 14SP2+)

Minor revision for Version 4.2.1 (Release 14SP3)
Revised for Version 4.3 (Release 2006a)

Revised for Version 4.4 (Release 2006b)

Getting Started

What Is the Virtual Reality Toolbox? 1-2
Expected Background 1-2
Features of the Virtual Reality Toolbox 14
VRML Supportciiiiiiiiiii i 14
MATLAB Interface, 1-6
Simulink Interface 1-6
MATLAB Compiler Supportcciiiiinnna.. 1-7
VRML Viewersiiiiitiiiiiinnnnnneeenn 1-7
VRML Editor i, 1-8
Real-Time Workshop Support 1-9
SimMechanics Support 1-9
Hardware Support 0., 1-9
Client-Server Architecture 1-9
VRML OVerviewc.cuuuiiiiinnnnnneeennnnn 1-10
VRML HiStOry . .ovvviniiti it iie et iienenns 1-10
VRML Coordinate System, 1-11
VRML File Format 1-12
Examples Using the Virtual Reality Toolbox 1-16
Simulink Interface Examples 1-16
MATLAB Interface Examples 1-23
Virtual Reality Toolbox Texture File 1-26
Implementation Notes 1-27
VRML Compatibility i, .. 1-27

Virtual Reality Toolbox Server 1-28

vi

Contents

Installation

2

Required Products 2-3
MATLAB . e e e e 2-3
VRML Viewerccciiiiiiiiiiet i 2-3

Recommended Product 2-5
Simulink e 2-5

Related Products 2-6

System Requirements 2-7
Supported Computer Platforms 2-7
Host Computer0 i, 2-8
Client Computer, 2-10

Installing the Virtual Reality Toolbox on the Host

Computert iiiiiiiiinnnnnnnn 2-12
Components on a Host Computer 2-12
Installing from a CD (Windows) 2-13
Installing from a CD (UNIX/Linux)c..... 2-14
LD_LIBRARY_PATH Environment Variable (UNIX) 2-16
Known Issue with the Virtual Reality Toolbox and Microsoft
Internet Explorer 6.0 (Windows) 2-17

Installing the VRML Plug-In Viewer on the Host

Computert iiiiiiiiiennnnnnns 2-19
Virtual Reality Toolbox Viewer 2-19
Installing a VRML Plug-In (Windows) 2-20
Installing a VRML Plug-In (UNIX/Linux) 2-23
Setting the Default Viewer of Virtual Scenes 2-24
Installing the VRML Editor on the Host Computer 2-29
Installing the VRML Editor (Windows) 2-29
VRML Editor (UNIX/Linux)cviivivvnenn.. 2-30
Setting the Default Editor of Virtual Scenes 2-30

Changing Virtual Reality Toolbox Preferences with the
MATLAB Preferences Dialog 2-36

Virtual Reality Toolbox Preferences 2-36

Virtual Reality Toolbox Figure Preferences 2-39
Virtual Reality Toolbox World Preferences 2-45
Removing Components (Windows) 2-48
Removing the Virtual Reality Toolbox and V-Realm Builder
(Windows) ...t 2-48
Removing the blaxxun Contact Plug-In (Windows) 2-49
Installing on the Client Computer 2-50
Installing a VRML Plug-In (Windows) 2-50
Testing the Installation 2-51
Running a Simulink Interface Example 2-51
Running a MATLAB Interface Example 2-56

Simulink Interface

3

Associating a Virtual World with Simulink 3-2
Adding a Virtual Reality Toolbox Block 3-2
Changing the Virtual World Associated with a Simulink

Block ... e 3-9

Using the Simulink Interface 3-11
Displaying a Virtual World and Starting Simulation 3-11
Viewing a Virtual World with a Web Browser on the Host

Computerottt 3-14
Viewing a Virtual World with a Web Browser on the Client
Computercoiiiiiiiiiiiiiiiie i 3-18

q |

Using the MATLAB Interface 4-2
Creating a vrworld Object 4-2

vii

viii

Opening a Virtual World 4-3

Interacting with a Virtual World 4-5
Closing and Deleting a vrworld Object 4-8
Recording Offline Animations 4-9
Animation Recording File Tokens 4-10
Manual 3-D VRML Animation Recording 4-12
Manual 2-D AVI Animation Recording 4-15
Scheduled 3-D VRML Animation Recording 4-18
Scheduled 2-D AVI Animation Recording 4-20
Viewing Animation Files 4-23
MATLAB Animation Recording of Virtual Worlds Not
Associated with Simulink Models 4-24

Virtual Worlds

5

VRML Editing Tools, 5-2
Editors for Virtual Worlds 5-2
V-Realm Builder 5-4

Deformation of a Sphere Example 5-5
Defining the Problem 5-5
Adding a Virtual Reality Toolbox Block 5-6
Creating a Sphere in a Virtual World 5-8
Creating a Boxin a Virtual World 5-13
Connecting a Simulink Model to a Virtual World 5-17

VRML DataTypesc.utiiiiiiiinnneeennnnnn 5-21
VRML Field Data Typesccoviiiiiiiinnen... 5-21
VRML Data Class Typescovuiiieeinnnnneeen.. 5-23

Viewing Virtual Worlds

6

Virtual Reality Toolbox Viewer 6-2

Contents

MenuBar i e 6-3

Toolbarot e e e 6-5
Navigation Panel i .. 6-5
Starting and Stopping Simulations 6-9
Navigationcouuiiiiiiniiiiiieeennnnnnnns 6-10
Frame Capture and Animation Recording File Tokens ... 6-17
Creating Frame Captures, .. 6-20
Configuring Animation Recording Parameters 6-22
Recording Files in the VRML Format 6-22
Recording Files in the Audio Video Interleave (AVI)

Format i 6-24
Scheduling Files for Recording 6-26
Interactively Starting and Stopping Animation

Recordingco i, 6-29
Viewing the Animation File 6-29
Working with Viewpoints 6-31
Rendering i i 6-38

blaxxun Contact VRML Plug-In 6-47
Viewpoint Control i, .. 6-47
Control Menuciiiitiiiitnnienneennnn.. 6-47
Navigationciuuuiiitinniiiiieeeennnnnnnns 6-48
Movement Modesc.ouiiiiiiiiiiiian 6-49
blaxxun Contact Settings 6-50
Stereoscopic Visionciuiiiiiiiiinniinee... 6-51

Virtual Reality Toolbox Stand-Alone Viewer

7

What Is Orbisnap? i, 7-2
Installing Orbisnap, 7-3
System Requirements, 7-3
Copying Orbisnap to Another Location 7-3
Adding Shortcuts or Symbolic Links 7-4
Using Orbisnapc0 i, 7-5

Viewing Prerecorded WRL Animations or Virtual
Worlds i e 7-6

Viewing the Virtual Reality Toolbox Server Virtual Worlds

Remotely i, 7-6
Orbisnap Interface 7-10
MenuBar e 7-10
Toolbarottt e e 7-11
Navigation Panel i .. 7-12
Orbisnap Command Line 7-17

8|

Control Input Devices, 8-1
Utilities 8-1
Virtual Worlds i i, 8-2
VRML-Related Signals 8-2

Blocks — Alphabetical List

2

Functions — By Category

10|

MATLAB Interface Functions 10-1

vrworld Object Methods 10-2

Contents

vrnode Object Methods 10-3

vrfigure Object Methods 10-3

Functions — Alphabetical List

Glossary

Index

xi

xii Contents

Getting Started

The Virtual Reality Toolbox allows you to connect an existing virtual world,
defined with VRML, to Simulink® and MATLAB®. Understanding the
features of the Virtual Reality Toolbox and some basic VRML concepts will
help you to use this product more effectively.

What Is the Virtual Reality Toolbox?
(p. 1-2)

Features of the Virtual Reality
Toolbox (p. 1-4)

VRML Overview (p. 1-10)

Examples Using the Virtual Reality
Toolbox (p. 1-16)

Virtual Reality Toolbox Texture File
(p. 1-26)

Implementation Notes (p. 1-27)

Solution for virtual interaction with
models of dynamic systems over time

Description of the many features
available to create and view dynamic
systems

Brief history of VRML, differences
between the VRML and MATLAB

coordinate systems, and the format
of VRML files

VRML worlds with an interface to
Simulink block diagrams and an
interface to MATLAB objects and
functions

Virtual Reality Toolbox texture file
usage recommendations

Outline of the Virtual Reality Toolbox
server and VRML compatibility

1 Getting Started

What Is the Virtual Reality Toolbox?

The Virtual Reality Toolbox is a solution for interacting with virtual reality
models of dynamic systems over time. It extends the capabilities of MATLAB
and Simulink into the world of virtual reality graphics.

¢ Virtual worlds — Create virtual worlds or three-dimensional scenes using
standard Virtual Reality Modeling Language (VRML) technology.

¢ Dynamic systems — Create and define dynamic systems with MATLAB
and Simulink.

® Animation — View moving three-dimensional scenes driven by signals from
the Simulink environment.

e Manipulation — Change the positions and properties of objects in a virtual
world while running a simulation.

To provide a complete working environment, the Virtual Reality Toolbox
includes additional components:

e VRML viewer — Use either the Virtual Reality Toolbox viewer or, for
Windows platforms, the blaxxun Contact plug-in for Web browsers to
display your virtual worlds.

¢ VRML editor — For Windows platforms, use V-Realm Builder to create and
edit VRML code. For UNIX or Linux platforms, use the MATLAB text
editor to write VRML code to create virtual worlds.

Expected Background

To help you effectively read and use this guide, here is a brief description of
the chapters and a suggested reading path. As a general rule, you can assume
that the Virtual Reality Toolbox on the Mac OS X platform works as described
for the UNIX/Linux platforms.

This guide assumes that you are already familiar with

e MATLAB, to write scripts and functions with M-code, and to use functions
with the command-line interface

¢ Simulink and Stateflow® to create models as block diagrams and simulate
those models

1-2

What Is the Virtual Reality Toolbox2

® VRML, to create or otherwise provide virtual worlds or three-dimensional
scenes to connect to Simulink or MATLAB

If you are a new user — you might want to review
e Chapter 1, “Getting Started” — This chapter gives you an overview of the

Virtual Reality Toolbox features.

e Chapter 3, “Simulink Interface” — Interact with a virtual world from
Simulink.

e Chapter 4, “MATLAB Interface” — Interact with a virtual world from
MATLAB.

If you are an experienced Virtual Reality Toolbox user — you might want
to review

® Chapter 8, “Blocks — By Category” — Additional functionality has been
added to the Virtual Reality Toolbox library.

¢ “yrworld Object Methods” on page 10-2 — Description of vrworld object
properties and methods.

¢ “yrnode Object Methods” on page 10-3 — Description of vrnode object
properties and methods.

o “yrfigure Object Methods” on page 10-3 — Description of vrfigure object
properties and methods.

1 Getting Started

14

Features of the Virtual Reality Toolbox

The Virtual Reality Toolbox includes many features for you to create and
visualize virtual reality models of dynamic systems. It also provides real-time
virtual interaction with dynamic models.

This section includes the following topics that describe these features:

“VRML Support” on page 1-4 — Use VRML to define a virtual world

“MATLAB Interface” on page 1-6 — Control the virtual world from the
MATLAB interface

“Simulink Interface” on page 1-6 — Use Virtual Reality Toolbox blocks to
connect your Simulink model to a virtual world

“MATLAB Compiler Support” on page 1-7 — Generate redistributable,
stand-alone applications that include Virtual Reality Toolbox functionality,
including the Virtual Reality Toolbox viewer

“VRML Viewers” on page 1-7 — View your virtual world with the Virtual
Reality Toolbox viewer or your Web browser

“VRML Editor” on page 1-8 — Create virtual worlds using a VRML
authoring tool or text editor

“Real-Time Workshop Support” on page 1-9 — Support for simulations that
use code generated by Real-Time Workshop®

“SimMechanics Support” on page 1-9 — View the behavior of your
SimMechanics model in a virtual world

“Hardware Support” on page 1-9 — Functions for using special hardware
devices

“Client-Server Architecture” on page 1-9 — Provide client-server
architecture for a single computer or network operation

VRML Support

The Virtual Reality Modeling Language (VRML) is an ISO standard that is
open, text-based, and uses a WWW-oriented format. You use VRML to define
a virtual world that you can display with a VRML viewer and connect to a
Simulink model.

Features of the Virtual Reality Toolbox

The Virtual Reality Toolbox uses many of the advanced features defined in
the current VRML97 specification. The term VRML, in this guide, always
refers to VRML as defined in the VRML97 standard ISO/IEC 14772-1:1997,
available from http://www.web3d.org. This format includes a description of
3-D scenes, sounds, internal actions, and WWW anchors.

The Virtual Reality Toolbox analyzes the structure of the virtual world,
determines what signals are available, and makes them available from
MATLAB and Simulink.

The Virtual Reality Toolbox viewer supports the majority of VRML97
standard nodes, allowing you almost complete control over associated virtual
worlds. The blaxxun Contact plug-in supports all VRML97 standard nodes.

Note The blaxxun Contact VRML plug-in is required for sound. Other web
viewers may allow for sound playback, but are not officially supported.

The Virtual Reality Toolbox makes sure that the changes made to a virtual
world are reflected in MATLAB and Simulink. If you change the viewpoint
in your virtual world, this change occurs in the vrworld object properties
in MATLAB and Simulink.

The Virtual Reality Toolbox includes functions for retrieving and changing
virtual world properties.

Note Since some VRML worlds are automatically generated in VRML1.0,
and the Virtual Reality Toolbox does not support VRML1.0, you need to save
these worlds in the current standard for VRML, VRML97.

For PC platforms, you can convert VRML1.0 worlds to VRML97 worlds

by opening the worlds in V-Realm Builder and saving them. V-Realm
Builder is shipped with the PC version of the Virtual Reality Toolbox. Other
commercially available software programs can also perform the VRML1.0 to
VRML97 conversion.

1-5

http://www.web3d.org

1 Getting Started

MATLAB Interface

The Virtual Reality Toolbox provides a flexible MATLAB interface to virtual
reality worlds. After creating MATLAB objects and associating them with

a virtual world, you can control the virtual world by using functions and
methods.

From MATLAB, you can set positions and properties of VRML objects, create
callbacks from graphical user interfaces (GUIs), and map data to virtual
objects. You can also view the world with a VRML viewer, determine its
structure, and assign new values to all available nodes and their fields.

The Virtual Reality Toolbox includes functions for retrieving and changing
the virtual world properties and for saving the VRML files corresponding to
the actual structure of a virtual world.

MATLAB provides communication for control and manipulation of virtual
reality objects using MATLAB objects.

Simulink Interface

With a Simulink model, you can observe a simulation of your dynamic system
over time in a visually realistic 3-D model.

The Virtual Reality Toolbox provides blocks to directly connect Simulink
signals with virtual worlds. This connection lets you visualize your model
as a three-dimensional animation.

You can implement most of the Virtual Reality Toolbox features with Simulink
blocks. Once you include these blocks in a Simulink diagram, you can select a
virtual world and connect Simulink signals to the virtual world. The Virtual
Reality Toolbox automatically scans a virtual world for available VRML nodes
that Simulink can drive.

All the VRML node properties are listed in a hierarchical tree-style viewer.
You select the degrees of freedom to control from within Simulink. After you
close a Block Parameters dialog box, Simulink updates the block with the
inputs and outputs corresponding to selected nodes in the virtual world. After
connecting these inputs to appropriate Simulink signals, you can view the
simulation with a VRML viewer.

Features of the Virtual Reality Toolbox

Simulink provides communication for control and manipulation of virtual
reality objects, using Virtual Reality Toolbox blocks.

MATLAB Compiler Support

The Virtual Reality Toolbox supports the MATLAB Compiler. With this
capability, you can use the MATLAB Compiler to take M-files as input and
generate redistributable, stand-alone applications that include Virtual Reality
Toolbox functionality, including the Virtual Reality Toolbox viewer.

Stand-alone applications that include Virtual Reality Toolbox functionality
have the following limitations:

® No Simulink support, which results in no access to the Virtual Reality
Toolbox Simulink library (vrlib).

® No Virtual Reality Toolbox server, which results in no remote connection
for the Orbisnap or blaxxun viewers

¢ No animation recording ability
® No editing world ability

¢ The following Virtual Reality Toolbox viewer features cannot be used in
stand-alone applications:

= File > Open in Editor
= Recording menu
= Simulation menu
= Help access
To use these features, write an M-file that uses the MATLAB interface for the

Virtual Reality Toolbox (for example, creating, opening, and closing a vrworld
object), then use the MATLAB Compiler.

VRML Viewers

The Virtual Reality Toolbox contains a viewer that is the default viewing
method for virtual worlds. This Virtual Reality Toolbox viewer is supported
on PC, UNIX, Mac OS X, and Linux platforms.

1-7

1 Getting Started

If you are on a PC platform, you can install a VRML plug-in and view a
virtual world in your preferred Web browser. For PC platforms, the Virtual
Reality Toolbox includes the VRML plug-in blaxxun Contact. This is the
only supported VRML plug-in.

If you install the VRML plug-in, the Virtual Reality Toolbox connects
MATLAB and Simulink with the VRML-enabled browser to display a
simulated process using the TCP/IP protocol. This allows you to watch a
simulated virtual world not only on the computer where MATLAB and
Simulink are running, but also on other computers connected through the
Internet

VRML Editor

For PC platforms, the Virtual Reality Toolbox includes one of the classic
VRML authoring tools, V-Realm Builder by Ligos Corp. With the addition of
this VRML authoring tool, the Virtual Reality Toolbox provides a complete
authoring, development, and working environment for carrying out 3-D visual
simulations.

You use a VRML editor to create the virtual worlds you connect to Simulink
block diagrams:

¢ PC platforms — V-Realm Builder Version 2.0 is included with the Virtual
Reality Toolbox. If you do not want to use V-Realm Builder, you can use
your favorite VRML editor.

Use the command vrinstall to install the editor before editing a virtual
world. See “Installing the VRML Editor (Windows)” on page 2-29.

For information on using V-Realm Builder with the Virtual Reality Toolbox,
see Chapter 5, “Virtual Worlds”

e UNIX/Linux platforms — The default VRML editor for UNIX/Linux
platforms is the MATLAB editor. If you do not want to use the MATLAB
editor, you can set the Editor preference to your favorite text editor.

V-Realm Builder is the only supported VRML editor. It is provided with the
PC version of the Virtual Reality Toolbox.

1-8

Features of the Virtual Reality Toolbox

Real-Time Workshop Support

Real-Time Windows Target

The Simulink interface in the Virtual Reality Toolbox supports the Real-Time
Windows Target. Using the Simulink external mode, you can interact with
real-time code generated by Real-Time Workshop and compiled with a
third-party C/C++ compiler in the Real-Time Windows Target environment.
See the Real-Time Windows Target User’s Guide documentation for further
details.

SimMechanics Support

You can use the Virtual Reality Toolbox to view the behavior of a model
created with SimMechanics. First, you build a model of a machine in Simulink
using SimMechanics blocks. Then, create a detailed picture of your machine
in a virtual world, connect this world to the SimMechanics body sensor
outputs, and view the behavior of the bodies in a VRML viewer.

Hardware Support

The Virtual Reality Toolbox contains functions for using special hardware
devices, including Joystick and SpaceMouse. It can also connect to common
hardware devices, including joysticks and Magellan SpaceMouse, using
Simulink blocks.

Client-Server Architecture

The Virtual Reality Toolbox connects MATLAB and Simulink to a
VRML-enabled Web browser using the TCP/IP protocol. The toolbox can be
used in two configurations:

¢ Single computer — MATLAB, Simulink, and the virtual reality
representations run on the same host computer.

® Network computer — You can view an animated virtual world on a
computer separate from the computer with the Virtual Reality Toolbox
server. Multiple clients can be connected to one server.

1-9

1 Getting Started

VRML Overview

1-10

The Virtual Reality Modeling Language (VRML) is the language you use to
display three-dimensional objects with a VRML viewer.

This section includes the following topics:

e “VRML History” on page 1-10 — Events leading up to the creation of the
VRML97 standard.

o “VRML Coordinate System” on page 1-11 — The VRML coordinate system
is different from the MATLAB coordinate system.

e “VRML File Format” on page 1-12 — VRML files use a hierarchical
structure to describe three-dimensional objects and their movements.

VRML History

Since people started to publish their documents on the World Wide Web
(WWW), there has been an effort to enhance the content of Web pages with
advanced three-dimensional graphics and interaction with those graphics.

The term Virtual Reality Markup Language (VRML) was first used by Tim
Berners-Lee at a European Web conference in 1994 when he talked about a
need for a 3-D Web standard. Soon afterward, an active group of artists and
engineers formed around a mailing list called www-vrml. They changed the
name of the standard to Virtual Reality Modeling Language to emphasize
the role of graphics. The result of their effort was to produce the VRML

1 specification. As a basis for this specification, they used a subset of the
Inventor file format from Silicon Graphics.

The VRML 1 standard was implemented in several VRML browsers, but it
allowed you to create only static virtual worlds. This limitation reduced the
possibility of its widespread use. Quickly it became clear that the language
needed a robust extension to add animation and interactivity, and bring life to
a virtual world. The VRML 2 standard was developed, and in the year 1997 it
was adopted as International Standard ISO/IEC 14772-1:1997. Since then

it is referred to as VRML97.

VRMLI7 represents an open and flexible platform for creating interactive
three-dimensional scenes (virtual worlds). As computers improve in

VRML Overview

computational power and graphic capability, and communication lines become
faster, the use of 3-D graphics becomes more popular outside the traditional
domain of art and games. There are now a number of VRML97-enabled
browsers available on several platforms. Also, there are an increasing number
of VRML authoring tools from which to choose. In addition, many traditional
graphical software packages (CAD, visual art, and so on) offer VRML97
import/export features.

The Virtual Reality Toolbox uses VRML97 technology to deliver a unique,
open 3-D visualization solution for MATLAB users. It is a useful contribution
to a wide use of VRML97 in the field of technical and scientific computation
and interactive 3-D animation.

The VRML97 standard continues to be improved by the Web 3D Consortium.
The newly released X3D (eXtensible 3D) standard is the successor to VRML97.
X3D is an extensible standard that provides compatibility with existing VRML
content and browsers. For more information, see http://www.web3d.org.

VRML Coordinate System

z Y

» ¥
»x ¥

Y z
MATLAB graphics coordinale syslem VRML wordinale system

The VRML coordinate system is different from the MATLAB and Aerospace
Blockset coordinate systems. VRML uses the world coordinate system in
which the y-axis points upward and the z-axis places objects nearer or farther
from the front of the screen. It is important to realize this fact in situations
involving the interaction of these different coordinate systems. SimMechanics
uses the VRML coordinate system.

Rotation angles — In VRML, rotation angles are defined using the right-hand
rule. Imagine your right hand holding an axis while your thumb points in the

1-11

http://www.web3d.org

1 Getting Started

1-12

direction of the axis toward its positive end. Your four remaining fingers point
in a counterclockwise direction. This counterclockwise direction is the positive
rotation angle of an object moving around that axis.

Child objects — In the hierarchical structure of a VRML file, the position and
orientation of child objects are specified relative to the parent object. The
parent object has its local coordinate space defined by its own position and
orientation. Moving the parent object also moves the child objects relative

to the parent object.

Measurement units — All lengths and distances are measured in meters, and
all angles are measured in radians.

VRML File Format

You need not have any substantial knowledge of the VRML format to use the
VRML authoring tools to create virtual worlds. However, it is useful to have a
basic knowledge of VRML scene description. This helps you to create virtual
worlds more effectively, and gives you a good understanding of how the virtual
world elements can be controlled using the Virtual Reality Toolbox.

This section introduces VRML. For more information, see the VRML97
Reference. This reference is available online at http://www.web3d.org.
Many specialized VRML books can help you understand VRML concepts and

http://www.web3d.org

VRML Overview

create your own virtual worlds. For more information about the VRML, refer
to an appropriate third-party VRML book.

In VRML, a 3-D scene is described by a hierarchical tree structure of
objects (nodes). Every node in the tree represents some functionality of
the scene. There are 54 different types of nodes. Some of them are shape
nodes(representing real 3-D objects), and some of them are grouping nodes
used for holding child nodes. Here are some examples:

* Box node — Represents a box in a scene.

¢ Transform node — Defines position, scale, scale orientation, rotation,
translation, and children of its subtree (grouping node).

e Material node — Corresponds to material in a scene.
¢ DirectionalLight node — Represents lighting in a scene.
® Fog node — Allows you to modify the environment optical properties.

® ProximitySensor node — Brings interactivity to VRML97. This node
generates events when the user enters, exits, and moves within the defined
region in space.

Each node contains a list of fields that hold values defining parameters for
its function.

Nodes can be placed in the top level of a tree or as children of other nodes in
the tree hierarchy. When you change a value in the field of a certain node, all
nodes in its subtree are affected. This feature allows you to define relative
positions inside complicated compound objects.

You can mark every node with a specific name by using the keyword DEF in
the VRML scene code. For example, the statement DEF MyNodeName Box sets
the name for this box node to MyNodeName. You can access the fields of only
those nodes that you name in a virtual world

In the following example of a simple VRML file, two graphical objects are
modeled in a 3-D scene: A floor is represented by a flat box with a red ball
above it. Note that the VRML file is a readable text file that you can write
in any text editor.

#VRML V2.0 utf8

1-13

1 Getting Started

1-14

This is a comment line

WorldInfo {
title "Bouncing Ball"

}

Viewpoint {
position 0 5 30
description "Side View"

}

DEF Floor Box {
size 6 0.2 6

}

DEF Ball Transform {
translation 010 0
children Shape {

appearance Appearance {
material Material {

diffuseColor 1 0 O

}

}

geometry Sphere {

}

}
}

The first line is the VRML header line. Every VRML file must start with this
header line. It indicates that this is a VRML 2 file and that the text objects in
the file are encoded according to the UTF8 standard. You use the number sign
(#) to comment VRML worlds. Everything on a line after the # sign is ignored
by a VRML viewer, with the exception of the first header line.

Most of the box properties are left at their default values — distance from the
center of the coordinate system, material, color, and so on. Only the name
Floor and the dimensions are assigned to the box. To be able to control the
position and other properties of the ball, it is defined as a child node of a
Transform type node. Here, the default unit sphere is assigned a red color
and a position 10 m above the floor. In addition, the virtual world title is used
by VRML viewers to distinguish between virtual worlds. A suitable initial
viewpoint is defined in the virtual world VRML file.

When displayed in V-Realm Builder, the floor and red ball look like this:

VRML Overview

=

1-15

1 Getting Started

Examples Using the Virtual Reality Toolbox

The Virtual Reality Toolbox includes examples using both the Simulink and
MATLAB interfaces. You can use these examples to learn what you can do
with the Virtual Reality Toolbox.

This section includes the following topics:

¢ “Simulink Interface Examples” on page 1-16 — Examples that use the VR
Sink block in Simulink block diagrams

e “MATLAB Interface Examples” on page 1-23 — Examples that use
MATLAB objects to interact with a virtual world — Tips to help you get the
Virtual Reality Toolbox demos running smoothly

Simulink Interface Examples

For all the examples that have a Simulink model, use the following procedure
to view a virtual world:

1 In the MATLAB Command Window, enter the name of a Simulink model.
For example, enter

vrbounce

A Simulink window opens with the block diagram for the model. By
default, a virtual world opens in the Virtual Reality Toolbox viewer or your
VRML-enabled Web browser. If the viewer does not appear, double-click the
VR Sink block in the Simulink model.

2 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Block Parameters.

A Block Parameters dialog box opens. Note that the Open VRML viewer
automatically check box is selected by default for all Virtual Reality
Toolbox demos.

If you close the virtual world window, you can display it again by
double-clicking on the VR Sink block.

1-16

Examples Using the Virtual Reality Toolbox

3 In the Simulink window, from the Simulation menu, click Start.
(Alternatively, in the Virtual Reality Toolbox viewer, from the Simulation

menu, click Start.)

A simulation starts running, and the virtual world is animated using signal
data from the simulation.

The following table lists the Simulink examples provided with the Virtual
Reality Toolbox. Descriptions of the examples follow the table.

Example ::my VR Sink | Joystick | SpaceMouse
vrbounce X X

vrcrane_joystick X X
vrcrane_traj X

vrlights X

vrmaglev X X

vrmaglev_rtwin X X

vrmanipul X X
vrmemb1 X

vr_octavia X X

vrpend X X

vrplanets X X

vrtkoff X

Bouncing Ball Example (vrbounce)
The vrbounce example represents a ball bouncing from a floor. The ball
deforms as it hits the floor, keeping the volume of the ball constant. The
deformation is achieved by modifying the scale field of the ball.

Portal Crane with Joystick Control (vrcrane_joystick)

The vrcrane_joystick example illustrates how a Simulink model can
interact with a virtual world. The portal crane dynamics are modeled in

1-17

1 Getting Started

1-18

Simulink and visualized in virtual reality. The model uses the Joystick Input
block to control the setpoint. Joystick 3 axes control the setpoint position and
button 1 starts the crane. This example requires a standard Joystick with at
least three independent axes connected to the PC.

To minimize the number of signals transferred between the Simulink model
and the virtual reality world, and to keep the model as simple and flexible as
possible, only the minimum set of moving objects properties are sent from the
model to the VR Sink block. All other values that are necessary to describe
the virtual reality objects movement are computed from this minimum set
using VRMLScript in the associated VRML file.

For details on how the crane model hierarchy and scripting logic is
implemented, see the associated commented VRML file portal crane.wrl.

Portal Crane with Predefined Trajectory Example (vrcrane_traj)

The vrcrane_traj example is based on the vrcrane _joystick demo, but
instead of interactive control, it has a predefined load trajectory. The
vrcrane_traj model illustrates a technique to create the visual impression of
joining and splitting moving objects in the VRML world.

A crane magnet attaches the load box, moves it to a different location, then
releases the box and returns to the initial position. This effect is achieved
using an additional, geometrically identical shadow object that is placed as an
independent object outside of the crane objects hierarchy. At any time, only
one of the Load or Shadow objects is displayed, using two VRML Switch nodes
connected by the ROUTE statement.

After the crane moves the load to a new position, at the time of the load
release, a VRMLScript script assigns the new shadow object position
according to the current Load position. The Shadow object becomes visible.
Because it is independent from the rest of the crane moving parts hierarchy,
it stays at its position as the crane moves away.

Lighting Example (vrlights)

The vrlights example demonstrates light sources. In the scene, you can move
Sun (modeled as DirectionallLight) and Lamp (modeled as PointLight)
objects around the Simulink model. This creates the illusion of changes

Examples Using the Virtual Reality Toolbox

between day and night, and night terrain illumination. The associated VRML
file defines several viewpoints that allow you to observe gradual changes
in light from various perspectives.

Magnetic Levitation Model Example (vrmaglev)

The vrmaglev example shows the interaction between dynamic models

in Simulink and virtual worlds. The Simulink model represents the
HUMUSOFT CE 152 Magnetic Levitation educational/presentation scale
model. The plant model is controlled by a PID controller with feed-forward to
cope with the nonlinearity of the magnetic levitation system.

The position of the ball responds to the changing value of the set point. You
can observe this change not only in the Scope window, but also with a VRML
viewer displaying the virtual world. To display the virtual world, double-click
the VR Sink block, then click the View button in the dialog box.

Magnetic Levitation Model for Real-Time Windows Target
Example (vrmaglev_rtwin)

In addition to the vrmaglev example, the vrmaglev_rtwin example works
directly with the actual CE 152 scale model hardware in real time. The
MathWorks created this model to work with Real-Time Workshop, Real-Time
Windows Target, and the HUMUSOFT MF 614 data acquisition board.
However, you can adapt this model for other targets and acquisition boards.
A digital IIR filter, from the Signal Processing Blockset, filters the physical
system output. You can bypass the physical system by using the built-in
plant model. Running this model in real time is an example showing the
capabilities of Simulink in control systems design and rapid prototyping.

Note that after enabling the remote view in the VR Sink block dialog box, you
can control the Simulink model even from another (remote) client computer.
This can be useful for distributing the computing power between a real-time
Simulink model running on one machine and the rendering of a virtual reality
world on another machine.

To work with this model, use as powerful a machine as possible or split the
computing/rendering over two machines.

1-19

1 Getting Started

1-20

Manipulator with SpaceMouse Example (vrmanipul)

The vrmanipul example illustrates the use of the Virtual Reality Toolbox
for virtual reality prototyping and testing the viability of designs before the
implementation phase. Also, this example illustrates the use of the Magellan
SpaceMouse for manipulating objects in a virtual world. Note that you must
have the Magellan SpaceMouse to run this demo.

The VRML model represents a nuclear hot chamber manipulator. It is
manipulated by a simple Simulink model containing the Magellan Space
Mouse input block. This model uses all six degrees of freedom of the
SpaceMouse for manipulating the mechanical arm, and this model uses mouse
button 1 to close the grip of the manipulator jaws.

Magellan SpaceMouse is an input device with six degrees of freedom.

It is useful for navigating and manipulating objects in a virtual world.
SpaceMouse is also suitable as a general input device for Simulink models.
This professional device greatly facilitates all the previously mentioned
tasks. You can use the SpaceMouse for higher performance applications and
user comfort. SpaceMouse is supported through the Magellan Space Mouse
input block, which is included in the Virtual Reality Toolbox block library
for Simulink.

The Magellan Space Mouse input block can operate in three modes to cover
the most typical use of such a device in a three-dimensional context:

Examples Using the Virtual Reality Toolbox

® Speeds
® Positions

® Viewpoint coordinates

Rotating Membrane Example (vrmemb1)

The vrmemb1 example is similar to the vrmemb example, but this time the
associated virtual world is driven from a Simulink model.

Vehicle Dynamics Visualization (vr_octavia)

The vr_octavia example illustrates the benefits of the visualization

of complex dynamic model in the virtual reality environment. It also
demonstrates the Virtual Reality Toolbox 3-D off-line animation recording
functionality.

Inverted Pendulum Example (vrpend)

The vrpend example illustrates the various ways a dynamic model in
Simulink can interact with a virtual reality scene. It is the model of a
two-dimensional inverted pendulum controlled by a PID controller. What
distinguishes this model from common inverted pendulum models are the
methods for setting the set point. You visualize and interact with a virtual
world by using a Trajectory Graph and VR Sink blocks. The Trajectory Graph
block allows you to track the history of the pendulum position and change
the set point in three ways:

® Mouse — Click and drag a mouse pointer in the Trajectory Graph
two-dimensional window

¢ Input Signal — External Trajectory Graph input in this model (driven by a
random number generator)

® VR Sensor — Activates the input from a VRML TouchSensor
When the pointing device in the VRML viewer moves over an active
TouchSensor area, the cursor shape changes. The triggering logic in this

model is set to apply the new set point value with a left mouse button click.

Notice the pseudoorthographic view defined in the associated VRML file.
You achieve this effect by creating a viewpoint that is located far from the

1-21

1 Getting Started

1-22

object of interest with a very narrow view defined by the VRML FieldOfView
parameter. An orthographic view is useful for eliminating the panoramic
distortion that occurs when you are using a wide-angle lens. The disadvantage
of this technique is that locating the viewpoint at a distance makes the
standard viewer navigation tricky or difficult in some navigation modes, such
as the Examine mode. If you want to navigate around the virtual pendulum
bench, you should use some other viewpoint.

Solar System Example (vrplanets)

The vrplanets example shows the dynamic representation of the first four
planets of the solar system, Moon orbiting around Earth, and Sun itself. The
model uses the real properties of the celestial bodies. Only the relative planet
sizes and the distance between the Earth and the Moon are adjusted, to
provide an interesting view.

Several viewpoints are defined in the virtual scene, both static and attached to
an observer on Earth. You can see that the planet bodies are not represented
as perfect spheres. Using the VRML Sphere graphic primitive, which is
rendered this way, simplified the model. If you want to make the planets more
realistic, you could use the more complex IndexedFaceSet node type.

Mutual gravity accelerations of the bodies are computed using Simulink
matrix-type data support.

Plane Takeoff Example (vrtkoff)

The vrtkoff example represents a simplified aircraft taking off from a
runway. Several viewpoints are defined in this model, both static and attached
to the plane, allowing you to see the takeoff from various perspectives.

The model demonstrates the technique of combining several objects imported
or obtained from different sources (CAD packages, general 3-D modelers,
and so on) into a virtual reality scene. Usually it is necessary for you to
wrap such imported objects with an additional VRML Transform node. This
wrapper allows you to set appropriately the scaling, position, and orientation
of the objects to fit in the scene. In this example, the aircraft model from
the V-Realm Builder Object Library is incorporated into the scene. The file
vrtkoff2.wrl uses the same scene with a different type of aircraft.

Examples Using the Virtual Reality Toolbox

MATLAB Interface Examples

The following table lists the MATLAB interface examples provided with the
Virtual Reality Toolbox. Descriptions of the examples follow the table.

vrml()
Moving | Morphing Function
Example Objects | Objects | Text Recording | Use
vrcar X
vrheat X X
vrheat_anim X X X
vrmemb X X X

Car in the Mountains Example (vrcar)

This demonstration illustrates the use of the Virtual Reality Toolbox with
the MATLAB interface. In a step-by-step tutorial, it shows commands for
navigating a virtual car along a path through the mountains.

1 In the MATLAB Command Window, type

vrcar

2 A tutorial script starts running. Follow the instructions in the MATLAB
Command Window.

Heat Transfer Example (vrheat)

This demonstration illustrates the use of the Virtual Reality Toolbox with the
MATLAB interface for manipulating complex objects.

In this demonstration, matrix-type data is transferred between MATLAB
and a virtual reality world. Using this feature, you can achieve massive
color changes or morphing. This is useful for representing various physical
processes. Precalculated data of time-based temperature distribution in an
L-shaped metal block is used. The data is then sent to the virtual world. This
forms an animation with relatively large changes.

This is a step-by-step demonstration. Shown are the following features:

1-23

1 Getting Started

1-24

Reshaping the object

® Applying the color palette to represent distributed parameters across an
object shape

Working with VRML text objects
Animating a scene using the MATLAB interface

Synchronization of multiple scene properties

At the end of this example, you can preserve the virtual world object in the
MATLAB workspace, then save the resulting scene to a corresponding VRML
file or carry out other subsequent operations on it.

Heat Transfer Visualization with 2-D Animation (vrheat_anim)

This demonstration illustrates the use of the Virtual Reality Toolbox MATLAB
interface to create 2-D offline animation files.

You can control the offline animation recording mechanism by setting the
relevant vrworld and vrfigure object properties. Note that you should use
the Virtual Reality Toolbox viewer to record animations. However, direct
control of the recording is also possible.

This example uses the heat distribution data from the vrheat example to
create an animation file. You can later distribute this animation file to be
independently viewed by others. For this kind of visualization, where the
static geometry represented by VRML IndexedFaceSet is colored based on
the simulation of some physical phenomenon, it is suitable to create 2-D .avi
animation files. The Virtual Reality Toolbox uses the avifile function to
record 2-D animation exactly as it appears in the viewer figure.

There are several methods you can use to record animations. In this example,
we use the scheduled recording. When scheduled recording is active, a time
frame is recorded into the animation file with each setting of the virtual world
Time property. Recording is completed when you set the scene time at the end
or outside the predefined recording interval.

When using the Virtual Reality Toolbox MATLAB interface, you set the scene
time as desired. This is typically from the point of view of the simulated
phenomenon equidistant times. This is the most important difference from

Examples Using the Virtual Reality Toolbox

recording the animations for virtual worlds that are associated with Simulink
models, where scene time corresponds directly to the Simulink time.

Note that the scene time can represent any independent quantity along which
you want to animate the computed solution.

This is a step-by-step demonstration. Shown are the following features:

® Recording 2-D offline animations using the MATLAB interface

® Applying the color palette to visualize distributed parameters across an
object shape

Animating a scene

Playing the created 2-D animation file using the system AVI player

At the end of this example, the resulting file vrheat_anim.avi remains in
the working directory for later use.

Rotating Membrane with MATLAB GUI Example (vrmemb)

The vrmemb example shows how to use a MATLAB-generated 3-D graphic
object with the Virtual Reality Toolbox. The membrane was generated by
the logo function and saved in the VRML format using the standard vrml
function. You can save all Handle Graphics® objects this way and use them
with the Virtual Reality Toolbox as components of associated virtual worlds.

After starting the demo, you see a control panel with two sliders and three
check boxes. Use the sliders to rotate and zoom the membrane while you use
the check boxes to determine the axis to rotate around.

In the VRML scene, notice the text object. It is a child of the VRML Billboard
node. You can configure this node so that its local z-axis turns to point to the
viewer at all times. This can be useful for modeling virtual control panels
and head-up displays (HUDs).

1-25

1 Getting Started

Virtual Redlity Toolbox Texture File

The following are texture file recommendations for the Virtual Reality
Toolbox:

* Where possible, scale source texture files to a size equal to a power of 2 in
both dimensions. Doing so ensures optimal performance for the Virtual
Reality Toolbox viewer. If you do not perform this scaling, the Virtual
Reality Toolbox viewer might attempt to descale the image or create
textures with undesired resolutions.

¢ Use source texture files whose size and detail are no more than what you
need for your application.

® Where possible, use the Portable Network Graphics (PNG) format as the
static texture format. VRML also supports the GIF and JPG graphic
formats.

¢ For movie textures, use the MPEG format. For optimal performance, be
sure to scale source texture files to a size equal to the power a 2 in both
dimensions.

1-26

Implementation Notes

Implementation Notes

This section includes the following topics:

e “VRML Compatibility” on page 1-27 — Limitations on support for VRML97
features

e “Virtual Reality Toolbox Server” on page 1-28 — Accesses information about
VRML scenes, provides an interface between MATLAB and Simulink, and
communicates with clients

VRML Compatibility

The Virtual Reality Toolbox currently supports most features of VRML97,
with the following limitations:

¢ The Virtual Reality Toolbox server ignores the VRML Script node, but
it passes the node to the VRML viewer. This allows you to run VRML
scripts on the viewer side. You cannot run them on the Virtual Reality
Toolbox server.

¢ The Virtual Reality Toolbox server ignores the Inline node, but it passes the
node to the viewer. Therefore, the viewer sees the complete virtual world
with all included substructures, but the included parts are not accessible
from the toolbox. In some rare cases, this limitation can render the virtual
world unusable with the Virtual Reality Toolbox. This happens under
either of the following conditions:

= The virtual world contains a USE name reference to a node that is in
the included part.

= The virtual world contains an included part with a PROTO or
EXTERNPROTO declaration that is referenced in the main virtual
world file.

¢ In keeping with the VRML97 specification, the Virtual Reality Toolbox
Viewer ignores BMP files. As a result, VRML scene textures might not
display properly in the Virtual Reality Toolbox Viewer. To properly display
scene textures, replace all BMP texture files in a VRML scene with PNG,
JPG, or GIF equivalents. Note that blaxxun Contact supports BMP files in
addition to the standard VRML texture file formats.

For a complete list of VRML97 nodes, refer to the VRML97 specification.

1-27

1 Getting Started

1-28

Virtual Reality Toolbox Server

This note is applicable only if you are using blaxxun Contact as your VRML
viewer.

The Virtual Reality Toolbox uses a Virtual Reality Toolbox HTTP server
for communication between a VRML-enabled Web browser and the
MATLAB/Simulink environment. It generates the main Virtual Reality
Toolbox HTML page with the list of currently available virtual worlds and
sends VRML and other requested files and data to clients (VRML viewers).

The server is started when the Virtual Reality Toolbox is loaded into MATLAB.
This happens whenever you use a Virtual Reality Toolbox block in a Simulink
block diagram, or whenever you open a vrworld object in the MATLAB
interface. The HTTP server is shut down when you close all Simulink models
that contain Virtual Reality Toolbox blocks, or use the vrclear command.

When the HTTP server is running, your browser can see a list of available
virtual worlds at the following address, where 8123 is the default port number:

http://localhost:8123

Remote users can connect to the following address, where 8123 is the default
port number:

http://your_machine:8123

You can set the port number of the server in the Virtual Reality Toolbox
Preferences dialog box from the Simulink interface, or use vrsetpref in the
MATLAB Command Window.

Depending on the status of served vrworld objects, the list of available virtual
worlds can be empty.

Installation

The Virtual Reality Toolbox provides the files you need for installation on both
your host computer and client computer.

Required Products (p. 2-3) MATLAB, Web browser with VRML
plug-in (optional)

Recommended Product (p. 2-5) Simulink (optional) to use the
Virtual Reality Toolbox

Related Products (p. 2-6) Where to find information about

other MathWorks products for use
with the Virtual Reality Toolbox

System Requirements (p. 2-7) Minimum hardware and software
requirements to run the Virtual
Reality Toolbox with MATLAB and

Simulink
Installing the Virtual Reality Install the Virtual Reality Toolbox
Toolbox on the Host Computer on your desktop computer
(p. 2-12)
Installing the VRML Plug-In Viewer Install a viewer to view virtual
on the Host Computer (p. 2-19) worlds
Installing the VRML Editor on the Install VRML authoring tools to
Host Computer (p. 2-29) create virtual worlds

Changing Virtual Reality Toolbox Change Virtual Reality Toolbox
Preferences with the MATLAB preference settings
Preferences Dialog (p. 2-36)

Removing Components (Windows) Uninstall the Virtual Reality Toolbox
(p. 2-48) and its components

2 Installation

Installing on the Client Computer
(p. 2-50)

Testing the Installation (p. 2-51)

Install a viewer on another computer
to view virtual worlds remotely

Open a Simulink model, display a
virtual world, and run a simulation

Required Products

Required Products

The Virtual Reality Toolbox is part of a family of products from The
MathWorks. You need to install some of these products and other third-party
products to use the Virtual Reality Toolbox.

This section includes the following topics:

e “MATLAB” on page 2-3 — Create objects in the MATLAB workspace,
connect these objects to a virtual world, and then use a command-line
interface to control and make changes to the virtual world.

e “VRML Viewer” on page 2-3 — View virtual worlds described with VRML.

MATLAB

MATLAB provides the tools you use to write scripts and functions in M-code.
You can use your M-code scripts to set positions and properties of VRML
objects, create callbacks from GUIs, and map data to virtual objects.

Note Version 4.2 of the Virtual Reality Toolbox requires MATLAB Version 7.1.

MATLAB documentation — For information on using MATLAB, see the
MATLAB documentation. It explains how to work with data and how to
use the functions supplied with MATLAB. For a reference describing the
functions specific to the Virtual Reality Toolbox, see Chapter 10, “Functions
— By Category”.

VRML Viewer

You use a VRML viewer to visualize and explore virtual worlds described with
VRML. The following are descriptions of VRML viewers:

¢ Virtual Reality Toolbox viewer — This viewer is installed with the Virtual
Reality Toolbox and is the default viewer for virtual worlds. You can access
this viewer from either a Virtual Reality Toolbox block in your Simulink
model, or by using the vrview and vrfigure functions with MATLAB.

2-3

2 Installation

24

The Virtual Reality Toolbox viewer is a client to the Virtual Reality Toolbox
server. It does not require a Web browser and it is available on more
platforms than any other VRML97 viewer. It is supported on PC, Mac OS
X, UNIX, and Linux platforms. The viewer is the recommended method
for viewing virtual worlds on a host computer.

¢ blaxxun Contact Version 4.4 — VRML plug-in shipped with the PC version
of the Virtual Reality Toolbox. This VRML plug-in allows you to view
virtual worlds in your Web browser. The blaxxun Contact plug-in is the
only supported VRML plug-in.

You can view a virtual world in the Virtual Reality Toolbox viewer as soon

as you install the Virtual Reality Toolbox. If you want to view the virtual
world in your Web browser, you need to use the vrinstall command to install
the blaxxun Contact plug-in. See “Installing a VRML Plug-In (Windows)”

on page 2-20.

For information on using a Web browser to view virtual worlds, see “Testing
the Installation” on page 2-51. The blaxxun Contact installation executable
files are located at C: \matlabroot\toolbox\vr\blaxxun.

Every VRML plug-in installs Java classes into the Web browser. Limit the
number of plug-ins you use to avoid Java errors and conflicts. For this reason,
use only the Virtual Reality Toolbox viewer or the blaxxun Contact VRML
plug-in on PC platforms. On UNIX and Linux platforms, use only the Virtual
Reality Toolbox viewer.

Recommended Product

Recommended Product
Optionally, you can install Simulink to use the Virtual Reality Toolbox.
This section includes the following topic:

“Simulink” on page 2-5 — Create a model of your physical system and
controller using a block diagram, connect your block diagram to a virtual
world, and then use the block diagram to make changes to your model and
view those changes in the virtual world.

Simulink

Simulink provides an environment where you model your physical system and
controller as a block diagram. You create the block diagram by using a mouse
to connect blocks and a keyboard to edit block parameters.

With the Virtual Reality Toolbox, you can interact with the VR representation
of the model you created with Simulink blocks. You can visualize the
simulation of your dynamic system over time.

Note Version 4.2 of the Virtual Reality Toolbox uses Simulink Version 6.2.

Simulink documentation — For information on using Simulink, see the
Simulink documentation. It explains how to connect blocks, build models,
and change block parameters. For a reference describing the Virtual Reality
Toolbox blocks, see Chapter 8, “Blocks — By Category”.

2 Installation

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Virtual Reality Toolbox.

For more information about any of these products, see either of the following:

¢ Online documentation for that product if it is installed on your system

e The MathWorks Web site, at
http://www.mathworks.com/products/virtualreality/related.jsp

http://www.mathworks.com/products/virtualreality/related.jsp

System Requirements

System Requirements

The Virtual Reality Toolbox has the same hardware requirements as
MATLAB. It is a multiplatform product that runs on PC-compatible computers
with Windows or Linux. It runs on SGI, Solaris, and Alpha hardware running
UNIX, and also on Apple Power Macintosh hardware running Mac OS X. For
a list of supported operating systems, see “Supported Computer Platforms”
on page 2-7.

This section includes the following topics:

® “Supported Computer Platforms” on page 2-7 — Summary of the supported
computer platforms and the viewer and editor that are provided for each
of them.

® “Host Computer” on page 2-8 — Run MATLAB, Simulink, the Virtual
Reality Toolbox, VRML editor, and VRML viewer (the Virtual Reality
Toolbox viewer or Web browser with VRML plug-in).

¢ “Client Computer” on page 2-10 — Run a Web browser with a VRML
plug-in.

Supported Computer Platforms

The VR server is the part of the Virtual Reality Toolbox that interfaces with
your Simulink models. It stores information about the current state of virtual
worlds and manages connections to VR clients. The VR client is a VRML
viewer that displays a virtual world. The VR client can be either the Virtual
Reality Toolbox viewer or a Web browser with a VRML plug-in.

The following table summarizes the supported computer platforms and the
viewer and editor that are provided for each of them.

VR Virtual Reality | VRML VRML Browser
Platform/Product Server | Toolbox Viewer | Editor Plug-In
Microsoft Windows XP or | Yes Yes V-Realm blaxxun Contact™
Windows 2000 Builder*
Linux 2.4.x kernels Yes Yes MATLAB editor® | No

2-7

2 Installation

VR Virtual Reality | VRML VRML Browser
Platform/Product Server | Toolbox Viewer | Editor Plug-In
Sun Solaris 2.8, 2.9 Yes Yes MATLAB editor* | No
Power Macintosh G3, G4, | Yes Yes MATLAB editor* | No
or G5 running OS X (10.2
or later)

* Distributed with the Virtual Reality Toolbox product.

Host Computer

The host computer is a desktop computer where you install MATLAB,
Simulink, the Virtual Reality Toolbox, a VRML editor and, optionally, a Web
browser with a VRML plug-in. You can also install Real-Time Workshop
with Real-Time Windows Target or xPC Target to run and view a real-time
application.

The following table lists the minimum resources the Virtual Reality Toolbox
requires on the host computer.

Host Computer Hardware Requirements

Hardware Description

CPU Pentium, Athlon or higher (PC)

Graphics card Graphics card with hardware 3-D acceleration

RAM 128 Mbytes or more

Peripherals Hard disk drive with 45 Mbytes of free space
CD-ROM drive

TCP/TP If you want to allow a connection from a client

communication computer, you need a network connection between
the host computer and the client computer.

The following table lists the minimum software the Virtual Reality
Toolbox requires on your host computer. For a list of optional

2-8

System Requirements

software products related to the Virtual Reality Toolbox, see
http://www.mathworks.com/products/virtualreality/related.jsp.

Host Computer Software Requirements

Software Description
MATLAB Version 7.0.4.
Simulink Version 6.2. Simulink is not required, but we

highly recommend that you install it.

Virtual Reality Toolbox

Version 4.2.

VRML editor

For Windows platforms, you can install the VRML
editor (V-Realm Builder 2.0) provided with the
Virtual Reality Toolbox. For UNIX/Linux, the
default editor is the MATLAB editor. When you
create VRML worlds on these operating systems,
you can use any 3-D modeling tool with the
VRML97 export capability.

Web browser

On PC platforms, you can use a Web browser
and the blaxxun Contact plug-in to view virtual
worlds. This is an alternative to using the Virtual
Reality Toolbox viewer.

Use Microsoft Internet Explorer 4.0 or later, or
Netscape Navigator 4.0 or later with Java enabled.

VRML plug-in

If you are using a Web browser instead of the
Virtual Reality Toolbox viewer, you need to install
a VRML97 plug-in with External Authoring
Interface (EAI) support. If you have blaxxun
Contact (Windows) on your computer, you have
already installed a VRML plug-in.

Windows platforms — You can install the
blaxxun Contact 4.4 plug-in provided with the
Virtual Reality Toolbox.

For information on how to install the blaxxun
Contact plug-in, see “Installing a VRML Plug-In
(Windows)” on page 2-20.

2-9

http://www.mathworks.com/products/virtualreality/related.jsp

2 Installation

2-10

Client Computer

You can use a client computer to view and control a virtual world. Because
MATLAB or Simulink does not run on this computer, you need to connect to a
host computer running a simulation or executable code. The host computer,
through the VR server, provides the values needed to animate a virtual world.

The client computer communicates with the host computer over TCP/IP,

and it displays the virtual world using a VR client. In this case, the VR
client is a VRML-enabled Web browser. You can verify the TCP/IP connection
between the host and client computers by using the ping command from a
command-line prompt. If there are problems, you must first fix the TCP/IP
protocol settings according to the documentation for your operating system.

The following table lists the minimum hardware resources the Virtual Reality
Toolbox needs on the client computer.

Client Computer Hardware Requirements

Hardware Description

Graphics card Graphics card with hardware 3-D acceleration.

TCP/IP communication | If you want to allow a connection from a client
computer, you need a network connection between
the host computer and the client computer.

The following table lists the software the Virtual Reality Toolbox requires on
the client computer. You do not need to install the Virtual Reality Toolbox
on the client computer.

Because the only component required for the client computer is standard
VRML97 viewing software, it is possible that different configurations will
work. For example, you might be able to run an operating system not listed
in the table “Supported Computer Platforms” on page 2-7. However, these
configurations have not been tested and they are not supported.

System Requirements

Client Computer Software Requirements

Software

Description

Operating system

Microsoft Windows XP or Windows 2000 (the
TCP/TP protocol must be installed).

Web browser

Use Microsoft Internet Explorer 4.0 or later, or
Netscape Navigator 4.0 or later with Java enabled.

VRML plug-in

VRMLI7 plug-in with External Authoring
Interface support. If you have blaxxun Contact
(Windows) on your computer, you have already
installed a VRML plug-in.

Windows platforms -- You can install the
blaxxun Contact 4.4 plug-in provided with the
Virtual Reality Toolbox.

For information on how to install the blaxxun
Contact plug-in, see “Installing a VRML Plug-In
(Windows)” on page 2-20.

2-11

2 Installation

Installing the Virtual Reality Toolbox on the Host Computer

You might want to install the Virtual Reality Toolbox from a CD or from the
MathWorks Web site. For Web downloads, you need your online MathWorks
Account. Before you install the Virtual Reality Toolbox, you need to get a valid
license file and/or personal license password. For detailed information about
the installation process, see the installation documentation for your platform.

This section includes the following topics:

¢ “Components on a Host Computer” on page 2-12 — Description of the
individual components used with the Virtual Reality Toolbox

¢ “Installing from a CD (Windows)” on page 2-13 — PC installation procedure

¢ “Installing from a CD (UNIX/Linux)” on page 2-14 — UNIX/Linux
installation procedure

e “LD_LIBRARY_PATH Environment Variable (UNIX)” on page 2-16 —
Setting the library path environment variable

e “Known Issue with the Virtual Reality Toolbox and Microsoft Internet
Explorer 6.0 (Windows)” on page 2-17 — Running the Virtual Reality
Toolbox viewer with Microsoft Internet Explorer 6.0

Components on a Host Computer

This section introduces you to the individual components of the Virtual
Reality Toolbox: what they are, what they are used for, and when they should
or should not be installed. If you are not interested, you can skip this section,
or you can simply accept the defaults at the component selection screen, and
the recommended default components are installed.

¢ Virtual Reality Toolbox — This component contains the core files that
interconnect MATLAB and Simulink to VRML. This component is required
for the Virtual Reality Toolbox to operate, and you must install it on the
host computer. This component is not used on a client computer.

¢ Virtual Reality Toolbox viewer — This is a multiplatform VRML viewer
that is included with the Virtual Reality Toolbox, and it is set as the default
viewer for displaying virtual worlds.

2-12

Installing the Virtual Reality Toolbox on the Host Computer

¢ VRML plug-in — Optionally, you can use a VRML plug-in for a Web
browser to view virtual reality worlds. The blaxxun Contact plug-in is
included with the Virtual Reality Toolbox for Windows platforms. However,
you can also use the Virtual Reality Toolbox viewer. A VRML plug-in is the
only component that you need to install on a client computer.

® VRML editor — If you are going to create and modify virtual worlds, you
need a VRML97-compatible editor. V-Realm Builder is included with the
Virtual Reality Toolbox for Windows platforms. If you do not plan to edit
virtual reality worlds or if you prefer to use a different VRML editor, you
do not need to install it on your computer. For UNIX/Linux platforms, the
MATLAB editor is the default VRML editor. This component is not used
on a client computer.

¢ Example models — These are MATLAB and Simulink programs and
models connected to prebuilt virtual reality worlds. You can use these
models and virtual reality worlds both for discovering the capabilities of the
Virtual Reality Toolbox and as templates for building your own projects.
This component is not used on the client computer.

® Online documentation — This component contains the guide you are
reading now. You can access the online version through the MATLAB
Help browser. An Adobe Acrobat PDF file is available on the MathWorks
Web site at http://www.mathworks.com. Follow the links to product
documentation. This documentation can be read using the Adobe Acrobat
Reader. If you do not have this reader installed on your computer, you can
download it from http://www.adobe.com.

Installing from a CD (Windows)
To install the Virtual Reality Toolbox from a CD on a Windows platform:

1 Insert the CD into your host CD-ROM drive.

The installation program should start automatically after a few seconds.
If the installation program does not start automatically, run setup.exe
on the CD.

During the installation process, a screen similar to the following allows
you to select the products to install.

2 Select the Virtual Reality Toolbox check box, then click Next.

2-13

http://www.mathworks.com
http://www.adobe.com

2 Installation

2-14

4. Select products and/or documentation.

I_Real—Time Workehop Embedded Coder ﬂ
I_Requirementa Management Interface

I_EEZEL {converts models to Simulinlk)
I_E:Lg'nal Processing Toolbox

[Virtual Reality Toolbox

I_xPE Target

[xPC Target Embedded Option -

3 Follow the instructions on each of the remaining screens to complete the
installation.

The Virtual Reality Toolbox viewer is installed with the Virtual Reality
Toolbox. For PC platforms, you have the option of installing a VRML plug-in
for your browser as an alternative to the viewer. See “Installing a VRML
Plug-In (Windows)” on page 2-20.

If you are on a PC platform, you need to complete additional steps for
installing the VRML editor. See “Installing the VRML Editor (Windows)”
on page 2-29.

Installing from a CD (UNIX/Linux)

The following is an overview of how to install the Virtual Reality Toolbox on a
UNIX/Linux platform from the CD. If you have not installed any MathWorks
products before, consult the installation guide for your platform for a more
comprehensive explanation of the installation process.

1 Log in to your system.
2 Mount the CD-ROM drive.

3 Create a directory to be the mount point for the CD-ROM drive. For
example:

mkdir
/cdrom

Installing the Virtual Reality Toolbox on the Host Computer

4 Create the installation directory and move into it using the cd command.
For example, to install into the location /usr/local/matlab7, use the
following commands:

cd /usr/local mkdir matlab7
cd matlab7

Subsequent instructions in this guide refer to this directory as matlabroot.

Note This installation directory might already exist if you have installed
MATLAB on your system. In this case, move into the existing directory
using the cd command.

5 Move your license file, named license.dat, into the matlabroot directory.

If you are upgrading an existing MATLAB installation, rename the license
file in matlabroot/etc directory. The installer does not process the new
license file if it finds an existing license file in matlabroot/etc.

6 Run the appropriate installation script for your platform.

/cdrom/install*
& (Sun, and Linux platforms)

7 During the installation process, a dialog box allows you to select the
products to install.

2-15

2 Installation

2-16

Installation Options — CD' 1 of 2

2

[T
[T
[T
[T
[T
[T

Platforms:

Solaris
3Gl
HP-700
HP-
IBMIALX
Alpha

Linux

Items to install: Items not to install:

MATLAB Japanese Help{html) MATLAB
MATLAE Toolbox Japanese Help(html) Simulink
MATLAEB Kemel

Simulink

Control System Toolbox

SB2S5L {converts models to Simulink
System Identification Toolbox
FLEXIm

English Help{html) MATLAB

English Help{pdf) MATLAB

English Help{html) Simulink

English Help{pdf) Simulink

English Help{html) Control System T
English Help{pdf) Control System To
English Help{html) SBZ25L

English Help{pdf) SB25L

English Help{html) System Identific | ;

Remove = < Addd
Total Installation Size: Ia?n?su kbytes
LS _ Cancel | _ Help |

This dialog box lists all the products you are licensed to install in the Items
to Install box. Make sure the Virtual Reality Toolbox is listed in this box.

8 Follow the instructions on each of the remaining screens to complete the
installation.

The Virtual Reality Toolbox viewer is the default viewer for UNIX platforms.

For more information, see “Virtual Reality Toolbox Viewer” on page 2-19.

If you are on a UNIX platform, the MATLAB editor is your default VRML

editor. For more information, see “VRML Editor (UNIX/Linux)” on page 2-30.

LD_LIBRARY_PATH Environment Variable (UNIX)
If your system does not have OpenGL properly installed when you run the

Virtual Reality Toolbox viewer, you might see an error message like the
following in the MATLAB window:

Installing the Virtual Reality Toolbox on the Host Computer

Invalid MEX-file 'matlab/toolbox/vr/vr/vrsfunc.mexglx':
1libGL.so: cannot open shared object file

If you see an error like this, set the LD_LIBRARY_PATH environment variable.

If the LD_LIBRARY_PATH environment variable already exists, use a line like
the following to add the new path to the existing one:

setenv LD_LIBRARY_PATH
matlabroot/sys/opengl/lib/<PLATFORM>:$LD_LIBRARY_PATH

If the LD_LIBRARY_PATH environment variable does not already exist, use a
line like the following:

setenv LD_LIBRARY_PATH
matlabroot/sys/opengl/1lib/<PLATFORM>

In both cases, <PLATFORM> is the UNIX platform you are working in.

Known Issue with the Virtual Reality Toolbox and
Microsoft Internet Explorer 6.0 (Windows)

Microsoft Internet Explorer 6.0 might incorrectly interpret system Java
library paths, preventing Virtual Reality Toolbox components (such as those
for the Virtual Reality Toolbox viewer) from running properly. Netscape users
do not experience this problem.

If you are using Internet Explorer 6.0, you should manually edit the Java

library path for Microsoft Internet Explorer 6.0. Alternatively, you can also
use Microsoft Internet Explorer 5.5 with the Virtual Reality Toolbox.

Editing the Java Library Path
To manually edit the Java library path for Microsoft Internet Explorer 6.0,

1 Run the regedit command.
2 Go to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\JavaVM

2-17

2 Installation

A list of value names and their values appears.

3 Replace each instance of %systemroot% with the system root path. For
example:

C:\WINNT

4 Restart the computer.

2-18

Installing the VRML Plug-In Viewer on the Host Computer

Installing the VRML Plug-In Viewer on the Host Computer

You can use the Virtual Reality Toolbox viewer or VRML-enabled Web browser
to view virtual worlds. The Virtual Reality Toolbox viewer is the only viewer
that can be used on all supported platforms. The blaxxun Contact plug-in is
available for PC platforms only.

This section includes the following topics:

e “Virtual Reality Toolbox Viewer” on page 2-19 — Preferred method of
viewing virtual scenes.

¢ “Installing a VRML Plug-In (Windows)” on page 2-20 — Install the blaxxun
Contact plug-in.

¢ “Installing a VRML Plug-In (UNIX/Linux)” on page 2-23 — Install a
VRMLI7 plug-in with External Authoring Interface support.

e “Setting the Default Viewer of Virtual Scenes” on page 2-24 — View virtual
scenes with the Virtual Reality Toolbox viewer or your VRML-enabled
Web browser.

Virtual Reality Toolbox Viewer

The Virtual Reality Toolbox viewer is the preferred method of viewing a
virtual scene. The viewer can be used on any supported operating system. It
is installed and set as the default viewer when you install the Virtual Reality
Toolbox. You can view virtual scenes as soon as the Virtual Reality Toolbox is
installed on your machine.

Note It is possible to view virtual scenes with a Web browser that contains

a VRML plug-in. Every VRML plug-in installs Java classes into the Web
browser. It is best to limit the number of plug-ins you install on your machine
to avoid Java errors and conflicts. For this reason, use only the Virtual Reality
Toolbox viewer and the blaxxun Contact VRML plug-in on PC platforms. On
UNIX and Linux platforms, use only the Virtual Reality Toolbox viewer.

2-19

2 Installation

2-20

Installing a VRML Plug-In (Windows)

When you install the Virtual Reality Toolbox, the Virtual Reality Toolbox
viewer is set as the default viewer. If you want to use a Web browser as a
VRML viewer, use the following procedure to install the blaxxun Contact
plug-in. You can use this plug-in with either Microsoft Internet Explorer
or Netscape Navigator. The blaxxun Contact plug-in is the only supported
VRML plug-in.

Note The blaxxun Contact installer installs the plug-in for the current default
browser only. If you change the default browser, you need to complete the
install procedure a second time. The blaxxun Contact installation executable
files are located at C:\matlabroot\toolbox\vr\blaxxun.

You must use blaxxun Contact 4.4 with the Virtual Reality Toolbox. This
version of the blaxxun Contact VRML plug-in is distributed with the Virtual
Reality Toolbox. The following procedure describes how to install the blaxxun
Contact VRML plug-in.

If you have the MATLAB Web Server installed on your machine, make
sure that the Web Server is stopped before you install the blaxxun Contact
plug-in. Also, verify that you are connected to the Internet before starting
this installation procedure:

1 Start MATLAB.
2 In the MATLAB Command Window, type

vrinstall -install viewer

MATLAB displays the message

Do you want to use OpenGL or Direct3d
acceleration? (o/d)

3 Check the graphics card manual to determine the acceleration method to
select. If you are not sure, select Direct 3d by typing

d

Installing the VRML Plug-In Viewer on the Host Computer

The blaxxun installer starts running and displays the following dialog box.

blaxxun Contact - Welcome Ed |

s

Thanks for choosing blaxxun =
Contact.

If you have questions or problems concerning
the product, please visit us at:
=http: fheeiew bilaseon.comfsupports

[nfor mation's for this Yersion:
- Date: 10/31,/2000
- Yersion: 4.4 for Direct 30

Special thanks to:
Sehjoon Ahn, Silicon Artists, Frederic Le

Diberder, &hdrea Fasce, Krisztian Fekete, Per 5

[IE"J [N TSP Y SN [Py SRR VRN o [[R R

Cancel |

| metallEheld

< Back

4 Follow the instructions on the remaining screens.
5 In the MATLAB Command Window, type

vrinstall
-check

If the viewer installation was successful, MATLAB displays the following
message:

VRML viewer: installed

If the viewer installation was unsuccessful, MATLAB displays the message

VRML
viewer: not installed

2-21

2 Installation

2-22

Known Issue with the blaxxun Contact Plug-In

The blaxxun Contact VRML plug-in can fail to update the virtual scene when
used with the Virtual Reality Toolbox and Microsoft Internet Explorer 5.5 and
later. Netscape users do not experience this problem.

If you are using Internet Explorer 5.5 or later, you must manually change a
network security setting before you can use blaxxun Contact 4.4 with the
Virtual Reality Toolbox Version 3.0 or later. Upgrading your version of
blaxxun Contact does not resolve this problem.

Changing the Default Network Security Setting

You must change your default network security setting before using the
blaxxun Contact plug-in with Internet Explorer 5.5 and later to ensure that
the virtual scene is updated appropriately. You can use this workaround for
the following:

® PC platform is Microsoft Windows 2000 or Windows XP Service Pack 1.

® The PC platform is not one of the above, but you have installed the
Microsoft Java Virtual Machine (JVM) on the PC.

1 Open Internet Explorer.

2 From the Tools menu, choose Internet Options.
The Internet Options dialog box opens.

3 Select the Local Intranet icon.

4 Click the Security tab.

5 Click the Custom Level button.
The Security Settings dialog box opens.

6 Scroll down until you see Microsoft VM. The first subheading is Java
permissions.

7 Select Custom.

Installing the VRML Plug-In Viewer on the Host Computer

The Java Custom Settings button appears in the lower left of the
Security Settings dialog box.

8 Click Java Custom Settings.
The Local intranet dialog box opens.
9 Click the Edit Permissions tab.

10 Scan the main headings and subheadings (marked with a lock icon) until
you see Run Unsigned Content.

11 Under Run Unsigned Content, find Access to all Network Addresses.
12 Under Access to all Network Addresses, select Enable.
13 Click OK.
The Local intranet dialog box closes.
14 In the Security Settings dialog box, click OK.
You are asked if you want to change the security settings for this zone.
15 Select Yes.

16 In the Internet Options dialog box, click OK.

Installing a VRML Plug-In (UNIX/Linux)

If you want to use a Web browser instead of the Virtual Reality Toolbox viewer
to view virtual scenes, you need to install a VRML97 plug-in with External
Authoring Interface (EAI) support. This requirement is met by blaxxun
Contact for Windows platforms. If you are using any other operating system,
you need to use the Virtual Reality Toolbox viewer to view virtual worlds.

Note blaxxun Contact is the only supported VRML plug-in.

2-23

2 Installation

Setting the Default Viewer of Virtual Scenes

If you install a VRML plug-in in your Web browser, it is possible to view
virtual scenes with either the Virtual Reality Toolbox viewer or your Web
browser. You determine the viewer used to display your scene using the
vrsetpref and vrgetpref commands. (Alternatively, if you want to use
the MATLAB File menu Preferences dialog, see “Changing Virtual Reality
Toolbox Preferences with the MATLAB Preferences Dialog” on page 2-36.)
The following procedure assumes that you are working on a PC platform:

1 At the MATLAB command prompt, type

vrinstall -check

to determine whether blaxxun Contact is installed.
MATLAB displays

VRML
viewer: installed VRML editor: installed

The viewer and editor are installed. If the viewer is not installed, see
“Installing a VRML Plug-In (Windows)” on page 2-20.

2 Determine your default viewer by typing

vrgetpref

MATLAB displays

ans =

DataTypeBool: 'logical'’
DataTypeInt32: 'double'
DataTypeFloat: 'double’
DefaultFigureAntialiasing: 'off'
DefaultFigureCaptureFileFormat: 'tif'
DefaultFigureCaptureFileName: 'S%f_anim_%n.tif'
DefaultFigureDeleteFcn: '
DefaultFigureLighting: 'on'
DefaultFigureMaxTextureSize: 'auto'
DefaultFigureNavPanel: 'halfbar'

2-24

Installing the VRML Plug-In Viewer on the Host Computer

DefaultFigureNavZones: 'off'
DefaultFigurePosition: [5 92 576 380]
DefaultFigureRecord2DCompressMethod: 'auto'
DefaultFigureRecord2DCompressQuality: 75
DefaultFigureRecord2DFileName: 'S%f_anim_%n.avi'
DefaultFigureStatusBar: 'on'
DefaultFigureTextures: 'on'
DefaultFigureToolBar: 'on'
DefaultFigureTransparency: 'on'
DefaultFigureWireframe: ‘'off'
DefaultViewer: 'internal'
DefaultWorldRecord3DFileName: 'S%f_anim_S%n.wrl'
DefaultWorldRecordMode: 'manual'’
DefaultWorldRecordInterval: [0 O]
DefaultWorldRemoteView: 'off'
DefaultWorldTimeSource: ‘'external'’
Editor: [1x60 char]
HttpPort: 8123
TransportBuffer: 5
TransportTimeout: 20
VrPort: 8124

The DefaultViewer property is set to 'internal'. The Virtual Reality
Toolbox viewer is the default viewer for viewing virtual scenes. Any virtual
scenes that you open are displayed in the viewer.

3 For example, at the MATLAB command prompt, type

vrplanets

The Planets demo is loaded and the virtual scene is displayed in the Virtual
Reality Toolbox viewer.

2-25

2 Installation

Mpinets _inix]

File Wiew Wiewpoints Mavigation Rendering Simulation Recording Help

I\Iiewfrnmtnp jJPl&IFL'H vIEU|O:-O-_|.||ﬁi|b -

|wiew From top [T=0.00 |Fl |Pas:[0.00 150,00 0.00] Dir[0.00 1,00 0.00] 2

4 Change the default viewer to your Web browser by typing

vrsetpref ('DefaultViewer', 'web')

The default Windows system VRML plug-in is used. The blaxxun
Contact VRML plug-in sets itself as the default VRML plug-in during its
installation.

5 At the MATLAB command prompt, type

vrplanets

The Planets demo is loaded and the virtual scene is displayed in your Web
browser.

2-26

Installing the VRML Plug-In Viewer on the Host Computer

/3 virtual Reality - Microsoft Internet Explorer provided by The 101 =l

File Edit Wiew Faworites Tools Help

d=EBack -~ =~) fat | Qhsearch [GeFavorites GMedia ©4 | By S - £

Address Iﬂj http:ff127.0.0.1:8123 worlds) 3jindex. html j E'J‘)GD

-

|§j Done l_ l_ l_ Local intranet y

6 Reset the Virtual Reality Toolbox viewer as your default viewer by typing

vrsetpref('DefaultViewer', 'factory')

7 In the Virtual Reality Toolbox viewer for vrplanets, from the Simulation
menu, select Block Parameters.

A Parameters: VR Sink dialog box opens.

2-27

2 Installation

«): Parameters: ¥R Sink o] 2

R Sink

Wirites Simulink walues to virual world node fields. Fields to be written are marked by
checkboxes inthe tree viewy. Every marked field corresponds to an input part of the block.

—Warld properties —WREML Tree
_S H
ource file ¥ Show node types ¥ Show fisld types
vrplanets.wrl| Birovwae |
RCOT -
)) Miorldinta)
Wi | Bl | (el | Toptiesw [viswpoirt)
Perspectiveview [Vievpoint)
Ot put -
[Mavigationlnfa)
v Open YRML Yiewer automatically (Backgraund)
Moon (Transtorm)
[&llow viewving from the Internet addChlIdre.n (MFhlods)
— X removeChildren (MFRode)

N L certer rsFvecan
Dt [ratation (SFRatation)
[ranets O scale (sFvecan

—D scaleCrientstion (SFRotation)
—Ie# transtation (SFYec3f)

Block properties [bhoxcenter (SFyec3f)
Sample time (-1 far inhert): —D hhoxSize (SFYec3f)
[+=X children (MFMode:
0.005 1 . () LI
Ok | Cancel | Help | Apply |

The target of the View button is determined by the DefaultViewer
property. If the DefaultViewer property is set to 'internal’, clicking the
View button opens the virtual world in the Virtual Reality Toolbox viewer.
If the DefaultViewer property is set to 'web', clicking the View button
opens the virtual world in your Web browser.

2-28

Installing the VRML Editor on the Host Computer

Installing the VRML Editor on the Host Computer

You can create virtual worlds with a VRML authoring tool or by writing
VRML code in a text editor.

This section includes the following topics:

¢ “Installing the VRML Editor (Windows)” on page 2-29 — Install V-Realm
Builder on your PC.

e “VRML Editor (UNIX/Linux)” on page 2-30 — The MATLAB editor is the
default VRML editor for UNIX platforms.

e “Setting the Default Editor of Virtual Scenes” on page 2-30 — Edit virtual
scenes with a VRML authoring tool or a text editor.

Installing the VRML Editor (Windows)

When you install the Virtual Reality Toolbox, files are copied to your hard
drive for V-Realm Builder, but the installation is not complete.

Installing the VRML editor writes a key to the Windows registry, making
extra library files in V-Realm Builder available for you to use, and it associates
the Edit button in Virtual Reality Toolbox blocks with this editor:

1 Start MATLAB.

2 In the MATLAB Command Window, type

vrinstall
-install editor

or type

vrinstall('-install', 'editor"')

MATLAB displays the following messages:

Starting editor installation...
Done.

3 Type

2-29

2 Installation

2-30

vrinstall
-check

If the editor installation was successful, MATLAB displays the following
message:

VRML editor: installed

VRML Editor (UNIX/Linux)

The MATLAB editor is the default VRML editor for UNIX platforms and no
installation is required. To create your virtual worlds using the MATLAB
editor, you need to understand the virtual reality modeling language and the
VRML data types that are relevant to MATLAB. For information about the
modeling language, refer to an appropriate third-party VRML book. Also, see
“VRML Data Types” on page 5-21 for the data types to use with MATLAB.

Alternatively, you can use a general 3-D modeling tool with VRML97 export
capabilities. Currently, no VRML editor with the functionality of those
available for Window platforms is commercially available for UNIX platforms.
However, an open source VRML editor, white dune, is under development
for UNIX systems. See http://www.csv.ica.uni-stuttgart.de/vrml/dune
for more information.

Setting the Default Editor of Virtual Scenes

You can edit virtual scenes with a VRML authoring tool, such as V-Realm
Builder, or with any text editor, as the VRML language is written in text
files. You determine the editor that is used to edit your scene by using the
vrsetpref and vrgetpref commands. (Alternatively, if you want to use
the MATLAB File menu Preferences dialog, see “Changing Virtual Reality
Toolbox Preferences with the MATLAB Preferences Dialog” on page 2-36.)

The following procedure demonstrates how to change your editor from
V-Realm Builder to a text editor. It assumes that you are working on a PC
platform.

1 At the MATLAB command prompt, type

vrinstall
-check

http://www.csv.ica.uni-stuttgart.de/vrml/dune

Installing the VRML Editor on the Host Computer

to determine whether V-Realm Builder is installed.
MATLAB displays

VRML viewer: installed VRML editor:

installed

The viewer and editor are installed. If the editor is not installed, see
“Installing the VRML Editor (Windows)” on page 2-29.

2 Determine your default editor by typing

a = vrgetpref

MATLAB displays

a =

DataTypeBool:

DataTypeInt32:

DataTypeFloat:
DefaultFigureAntialiasing:
DefaultFigureDeleteFcn:
DefaultFigurelLighting:
DefaultFigureMaxTextureSize:
DefaultFigureNavPanel:
DefaultFigureNavZones:
DefaultFigurePosition:
DefaultFigureRecord2DCompressMethod:
DefaultFigureRecord2DCompressQuality:
DefaultFigureRecord2DFileName:
DefaultFigureStatusBar:
DefaultFigureToolBar:
DefaultFigureTransparency:
DefaultFigureWireframe:
DefaultViewer:
DefaultWorldRecord3DFileName:
DefaultWorldRecordMode:
DefaultWorldRecordInterval:
DefaultWorldRemoteView:
DefaultWorldTimeSource:
Editor:

HttpPort:

‘logical’
"double’
"double’
"off'
‘on'
'auto'
"halfbar'
"off'

[5 92 512 380]
‘auto'

75
'%f_anim_S%n.avi'
‘on"

‘on'

‘on'

"off'

"internal’
'%f_anim_Sn.wrl'
"manual’

[0 0]

"off'
"external'’

[1x60 char]

8123

2-31

2 Installation

2-32

TransportBuffer: 5
VrPort: 8123

The variable a is a structure array. You need to index into it to determine
the Editor property.

3 To determine your default editor, type

a.Editor

MATLAB displays

ans = "%matlabroot\toolbox\vr\vrealm\program\vrbuild2.exe"
"sfile"

This is the path to the V-Realm Builder executable file. V-Realm Builder
is the current VRML editor.

4 Verify that V-Realm Builder is your default editor. At the MATLAB
command prompt, type

vrpend

The Inverted Pendulum demo loads and the pendulum is visible in the
viewer.

5 In the Virtual Reality Toolbox viewer for vrpend, from the Simulation
menu, select Block Parameters

The Parameters: VR Sink dialog box opens.

Installing the VRML Editor on the Host Computer

Parameters: ¥R Sink 10l =|
R Sink
Wites Simulink values to vitual wworld node fields. Fields to be written are marked by
checkboxes in the tree viewe. Every marked field corresponds to an input port of the block.
Wyarld propertie: ~WRML Tree
-5 i
ouree fie [V Show node types IV Show field types
Ivrpend.wrll Erowwse |
-

Wigny | Ediit | Reload |

~Output
i Cpen YRML Yiewer automatically

[&llowe viewving from the Interret

Description:

Ilnverted Pendulum

Block propertie:

Sarmple time (-1 for inherit):

0.2

ROOT

MWiorldinfo)
[Mavigationlnfo)
[Background)
[Transform)

[Transform)

[Miewpoint]

[Miewpoint]

[Miewpoint]
[DirectionalLight)

Rink (Transform)

Sensors (Transform)
Pendulum [Transform)

X addChildren (MFMode)
X removeChildren (MFMode)
O certer (3Fvecsn

O retation rsFRatation
1 scale rsFyvecan

b A A T R B T I

Ok | Cancel Help |

6 Click Edit.

The vrpend model opens in the V-Realm Builder authoring tool.

2-33

2 Installation

2-34

E ¥-Realm Builder 2.0 - [M:"-.,l:nnII:mH:"n.,vr"n.,vrdemus"-.,vrpend.wr:; - |I:I|i|
G File Edit View MNodes Libraries Manipulators Mode ‘Window Help -|5’|5|
D|(ud| #[E=(w] 2] 2|2 & F|Em=m 9[s]0]|e]T
[olelv| 87 Bl@el [+ 2 [0 Bjoooo|
24| Bl&| ¢le|e| S[LIONK] ¢|o|d|~
d N .
E EIQ'* DirectionalLight i
523 | | I [f] ambientInte :-::'
e |] col —
i/‘.l ----- ;ic;zgtian i
E ----- [f] inkensity E
..... IE
h [—]@ Wu:urlljdr;nfu i
(- 53 EI@] info E
“Lon | --[8] Copyrigt 4
Ll 8] $Revisio —
|§| $Date: =
B -[8] $Authar
----- [8] title
E-{%) MavigationInf
T B e =
4 I : :I e k
[Far Help, press F1 [[Prck [Speed:1 [11:198M

7 At the MATLAB window, change the default editor to the MATLAB editor
by typing

vrsetpref ('Editor', 'smatlabroot\bin\win32\meditor.exe
%file')

You can set your editor to any text editor you want to use by specifying the
path to the executable of the text editor.

8 In the Virtual Reality Toolbox viewer for vrpend, from the Simulation
menu, select Block Parameters.

The Parameters: VR Sink dialog box opens.
9 Click Edit.

The MATLAB editor opens and is now set as your default VRML editor.

Installing the VRML Editor on the Host Computer

10 To reset the V-Realm Builder authoring tool as your default VRML editor,
type

vrsetpref('Editor', 'factory')

Clicking the Edit button now launches V-Realm Builder.

2-35

2 Installation

Changing Virtual Reality Toolbox Preferences with the
MATLAB Preferences Dialog

Virtual Reality Toolbox installs with default preference settings. You can
change these settings with

e MATLAB File > Preferences dialog — This GUI has preference dialogs for
MATLAB and its related products, including the Virtual Reality Toolbox.
® Virtual Reality Toolbox MATLAB interface functions
= The Virtual Reality Toolbox — vrsetpref and vrgetpref functions
= Virtual figures — vrfigure/set and vrfigure/get functions
= Virtual worlds — vrworld/set and vrworld/get functions
The topics in this section describe how to set the Virtual Reality Toolbox

preferences using the MATLAB File > Preferences dialog. The list of

settable preferences is a subset of those available through the MATLAB
interface functions.

* “Virtual Reality Toolbox Preferences” on page 2-36
* “Virtual Reality Toolbox Figure Preferences” on page 2-39
* “Virtual Reality Toolbox World Preferences” on page 2-45

Virtual Reality Toolbox Preferences
To access the Virtual Reality Toolbox preferences GUI:

1 From the MATLAB desktop, select File > Preferences.
2 In the left pane of the Preferences dialog box, select Virtual Reality.

The Virtual Reality Preferences dialog appears in the right pane.

2-36

Changing Virtual Redlity Toolbox Preferences with the MATLAB Preferences Dialog

=) Preferences

= General

~MAT-Files
onfirmation Dialogs
seZauree Control
[#-Forts

E-Cammand Yyindaw
“Keyboard & Indenting

----- Camrmand Histary

[+ Editor Debugger

----- Current Directary
----- Array Editar

[+ Figure Copy Templste
----- Report Generatar
----- Instrument Contral

- Wiorld
[Sirmulink

Virtual Reality Preferences

Default YRML viewer:

YRML Editar command line:

=10 x|

internal

"Homatlabroottaolbocwrivrealmiprogramverbuild2 exe” " file"

—WRML data types representstion in MATLAB

Boal: I logiczal LI
Intaz: | doubie =]
Flost: | doubie =]
rCommunication
HTTP Part: fs123
VR Part f5124
Transpart Buffer: IS
Transport Timeout: |2IZI

Ok Cancel | Apply | Help |

you can change. Click OK to save the settings.

3 Set the preferences as desired. See the following table for the preferences

Preference

Value

Description

Bool

'logical' | 'char'

Default: 'logical’

Specifies the handling of the VRML Bool data
type for vrnode/setfield and vrnode/getfield.
If set to 'logical', the VRML Bool data type is
returned as a logical value. If set to 'char', the
Bool data type is returned 'on' or 'off'.

2-37

2 Installation

Preference

Value

Description

Default VRML
Viewer

'internal' | 'web'

Default: 'internal'

Specifies which viewer is used to view a virtual
scene. The Virtual Reality Toolbox viewer is used
when the preference is set to 'internal'. The
Web browser is used when this preference is set
to 'web'.

Float

'single' | 'double'’

Default: 'double’

Specifies the handling of the VRML float data
type for vrnode /setfield and vrnode/getfield.
If set to 'single’', the VRML Float and Color
data types are returned as 'single’'. If set to
'double', the Float and Color data types are
returned as 'double’.

Int32

"int32' |'doub1e'
Default: 'double’

Specifies handling of the VRML Int32 data type
for vrnode/setfield and vrnode/getfield. If
set to 'int32"', the VRML Int32 data type is
returned as int32. If set to 'double', the Int32
data type is returned as 'double’.

HTTP Port

Numeric

Default: 8123

IP port number used to access the VR server over
the Web via HTTP. If you change this preference,
you must restart MATLAB before the change
takes effect.

Transport Buffer | Numeric Length of the transport buffer (network packet
Default: 5 overlay) for communication between the VR
’ server and its clients.
Transport Timeout | Numeric Amount of time, in seconds, the VR Toolbox
. server waits for a reply from the client. If there
Default: 20 is no response from the client, the VR Toolbox
server disconnects from the client.
VRML Editor String Path to the VRML editor. If this path is empty,
command line the MATLAB editor is used.
VR Port Numeric IP port used for communication between the

Default: 8124

VR server and its clients. If you change this
preference, you must restart MATLAB before the
change takes effect.

2-38

Changing Virtual Redlity Toolbox Preferences with the MATLAB Preferences Dialog

Virtual Reality Toolbox Figure Preferences

The Virtual Reality Toolbox figure has a number of preferences, presented
in the following categories:

e “Virtual Reality Toolbox Figure Appearance Preferences” on page 2-39

* “Virtual Reality Toolbox Figure Rendering Preferences” on page 2-40

® “Virtual Reality Toolbox Figure 2-D Recording Preferences” on page 2-42

e “Virtual Reality Toolbox Figure Frame Capture Preferences” on page 2-44

Virtual Reality Toolbox Figure Appearance Preferences
To access the virtual figure appearance preferences:

1 From the MATLAB desktop, select File > Preferences.
2 In the left pane of the Preferences dialog box, select Virtual Reality.
3 In the left pane under Virtual Reality, select Figure.

The Virtual Reality Figure Preferences dialog appears in the right pane,
with the Appearance tab selected.

Virtual Reality Figure Preferences

Appearance | Renderingl 2-0 Recarding | Frame Cap‘furel
¥ Toaolbar

¥ Status bar

[Mavigation zones

Mavigation panel: I halfbar bt I
Paosition: I [2 92 576 380]

4 Set the preferences as desired. See the following table for the appearance
preferences you can change. Click OK to save the settings.

2-39

2 Installation

2-40

Property

Navigation panel

Default: 'halfbar'

Value
‘opaque' | 'translucent' |
'none' | 'halfbar' | ‘'bar'

Description

Controls the appearance of the
navigation panel in the Virtual
Reality Toolbox viewer.

Navigation zones

'off' | 'on'

Default: 'off"'

Toggles navigation zones on/off.

Position Vector of four doubles Specifies the screen coordinates
of this vrfigure object.
Status bar ‘off' | 'on' Toggles the status bar at the
Default: ' on' bottom of.the Virtual Reality
Toolbox viewer.
Toolbar ‘off' | 'on' Toggles the toolbar on the Virtual
D Reality Toolbox viewer.
Default: 'on

Virtual Reality Toolbox Figure Rendering Preferences
To access the virtual figure rendering preferences:

1 From the MATLAB desktop, select File > Preferences.
2 In the left pane of the Preferences dialog box, select Virtual Reality.

3 In the left pane under Virtual Reality, select Figure.

The Virtual Reality Figure Preferences dialog appears in the right pane.

4 Select the Rendering tab.

The Virtual Reality Figure Preferences dialog appears in the right pane,

with the Rendering tab selected.

Changing Virtual Redlity Toolbox Preferences with the MATLAB Preferences Dialog

Virtual Reality Figure Preferences

Appearance

[Antislizsing

2-D Recording | Frame Capture I

[Lighting
¥ Transparency
[~ wiretrame

V¥ Textures

Maimum texture size: I auta | ¥ I

5 Set the preferences as desired. See the following table for the rendering
preferences you can change. Click OK to save the settings.

Property Value Description
Antialiasing ‘off' | 'on'

Determines whether
Default: 'off" antialigsing is used vyhgn ‘
rendering scene. Antialiasing
smooths textures by
interpolating values between
texture points.

Lighting ‘off' | 'on' Specifies whether the lighting
Default: ‘on' is taken into account when

’ rendering. If it is off, all

the objects are drawn as if
uniformly lit.

2-41

2 Installation

2-42

Property

Value

Description

Maximum texture size

‘auto' | 32 <= x <= video
card limit, where x is a
power of 2 (video card limit is
typically 1024 or 2048)

Sets the maximum pixel size
of a texture used in rendering
vrfigure objects. The smaller
the size, the faster the texture
can render. Increasing this
value improves image quality
but decreases performance.

A value of 'auto' sets the
maximum possible pixel

size. If the value you enter

is unsuitable, a warning
might trigger. Virtual Reality
Toolbox then automatically
adjusts the property to the
next smaller suitable value.

Textures ‘off' | 'on' Turns texture rendering on or
Default: 'on' i
Transparency ‘off' | 'on' Specifies whether or not
Default: 'on' !;ranspargncy information
is taken into account when
rendering.
Wireframe ‘off' | 'on' Specifies whether objects are

Default: 'off'

drawn as solids or wireframes.

Virtual Reality Toolbox Figure 2-D Recording Preferences
To access the virtual figure 2-D recording preferences:

1 From the MATLAB desktop, select File > Preferences.

2 In the left pane of the Preferences dialog box, select Virtual Reality.

3 In the left pane under Virtual Reality, select Figure.

The Virtual Reality Figure Preferences dialog appears in the right pane.

Changing Virtual Redlity Toolbox Preferences with the MATLAB Preferences Dialog

4 Select the 2-D Recording tab.

The Virtual Reality Figure Preferences dialog appears in the right pane,
with the 2-D Recording tab selected.

¥irtual Reality Figure Preferences

F\ppearancel Rendering 2-D Recording I Frame Capture

2-D animated file name:

%l _anim_%an, avi

Recording compression method: Iauto
Recarding compression quality: | 5=
Frames per second: | 15

5 Set the preferences as desired. See the following table for the rendering
preferences you can change. Click OK to save the settings.

Property Value Description
Recording compression """ | 'auto' | 'lossless' Specifies the compression
method | 'codec_code' method for creating 2-D

animation files. The codec
code must be registered in
the system. See the MATLAB
function documentation for
avifile. Read/write.

Default: 'auto'

Recording compression 0-100 Specifies the quality of 2-D

quality Default: '75" animation file compression.

2-43

2 Installation

2-44

Property Value Description

2-D animated file name String. Specifies the 2-D offline
animation filename. The
string can contain tokens
that are replaced by the
corresponding information
when the animation recording
takes place. For further
details, see “Animation
Recording File Tokens” on
page 4-10.

Default: '%f_anim_%n.avi'

Frames per second 0-100 Specifies the frames per second
Default: '15" during animation playback.

Virtual Reality Toolbox Figure Frame Capture Preferences
To access the virtual figure frame capture preferences:

1 From the MATLAB desktop, select File > Preferences.
2 In the left pane of the Preferences dialog box, select Virtual Reality.
3 In the left pane under Virtual Reality, select Figure.
The Virtual Reality Figure Preferences dialog appears in the right pane.
4 Select the Frame Capture tab.

The Virtual Reality Figure Preferences dialog appears in the right pane,
with the Frame Capture tab selected.

Changing Virtual Redlity Toolbox Preferences with the MATLAB Preferences Dialog

Virtual Reality Figure Preferences

Fratme capture file name:

it _anim_%on tif

Fratme capture file format: I tit = I

5 Set the preferences as desired. See the following table for the rendering
preferences you can change. Click OK to save the settings.

Property Value Description
CaptureFileFormat "tif' | 'png’ Specifies file format for
Cvwaen a captured frame file.
Default: 'tif Read/write.
CaptureFileName String. Specifies the frame capture

filename. The string can
contain tokens that are
replaced by the corresponding
information when the
animation recording takes
place. For further details,
see “Frame Capture and
Animation Recording File
Tokens” on page 6-17.
Read/write.

Default: '%f_anim_%n.ext'

Virtual Reality Toolbox World Preferences
To access the virtual world preferences:

1 From the MATLAB desktop, select File > Preferences.

2 In the left pane of the Preferences dialog box, select Virtual Reality.

2-45

2 Installation

3 In the left pane under Virtual Reality, select World.

The Virtual Reality World Preferences dialog appears in the right pane.

«): Preferences =10 =]

eneral Virtual Reality World Preferences

arts

olars ~3-0 Recarding
—HCommand Windaw
L eyhoard & Indenting | | 3-0 animated file name:

—Command History %f _anim_%n el
[+EditarDebugoer

—Help Recording mode: I tanuEl j
e Recording interval I[D 0]

—Current Directary

—Wvorkspace .

—Array Editor Tirne

—GUIDE Time source: I external LI
[F-Figure Copy Template

—Feport Generator

Fmstrument Cartrol [Al viewing from the Internet

[=-irtual Reality

igure
[F-Simulink

Cancel | Apply | Help |

4 Set the preferences as desired. See the following table for the rendering
preferences you can change. Click OK to save the settings.

Property Value Description
Allowing viewing from the | 'off' | 'on' Remote access flag. If the
Internet virtual world is enabled for

Default: 'off remote viewing, it is set to

'on'; otherwise, it is set to
"off'.

2-46

Changing Virtual Redlity Toolbox Preferences with the MATLAB Preferences Dialog

Property

Value

Description

3-D animated file name

String.

Default: '%f_anim_%n.wrl'

3-D animation filename. The
string can contain tokens
that are replaced by the
corresponding information
when the animation recording
takes place. For details, see
“Animation Recording File
Tokens” on page 4-10.

Recording mode

'manual' | 'scheduled'

Default: 'manual’

Animation recording mode.

Recording interval

Vector of two doubles

Default: [0 0]

Start and stop times for
scheduled animation
recording. Corresponds to
the virtual world object Time
property.

Time source

'external' | 'freerun'

Default: 'external'

Source of the time for the
virtual world. If set to
"external’, time in the scene
is controlled from MATLAB
(by setting the Time property)
or Simulink (simulation time).
If set to ' freerun', time in the
scene advances independently
based on the system timer.

2-47

2 Installation

Removing Components (Windows)

2-48

Normally, you should not have to uninstall the Virtual Reality Toolbox, the
blaxxun Contact plug-in, or V-Realm Builder. If you do, see the following
topics for the appropriate procedures:

¢ “Removing the Virtual Reality Toolbox and V-Realm Builder (Windows)” on
page 2-48 — Uninstalling the Virtual Reality Toolbox and V-Realm Builder

¢ “Removing the blaxxun Contact Plug-In (Windows)” on page 2-49 —
Uninstalling the blaxxun Contact plug-in

Removing the Virtual Redlity Toolbox and V-Realm
Builder (Windows)

Use the MathWorks uninstaller. Running this utility removes the Virtual
Reality Toolbox and V-Realm Builder from your system. It also restores your
previous system configuration.

1 On the Microsoft Windows task bar, click Start, point to MATLAB, and
then click R14 uninstaller.

The MathWorks uninstaller begins running.
2 Clear the Virtual Reality Toolbox check box.

3 Follow the remaining uninstall instructions.

Note The blaxxun Contact plug-in is not uninstalled during the Virtual
Reality Toolbox removal.

Removing Components (Windows)

Removing the blaxxun Contact Plug-In (Windows)
To uninstall this VRML plug-in from the host computer:

1 From the Microsoft Windows task bar, click Start, point to Settings, and
click Control Panel.

2 In the Control Panel cascading menu, click Add/Remove Programs.

3 In the Add/Remove Programs dialog box, select blaxxun Contact, then
click the Change/Remove button.

2-49

2 Installation

Installing on the Client Computer

2-50

In most configurations, you do not need to install a viewer on a client computer
because you can perform all the tasks on a host computer. However, if you
have very large models that consume considerable computational resources,
you might want to use a client computer to run and view the virtual world.

The client computer must have a VRML97 plug-in with External Authoring
Interface (EAI) support. This means that your client computer must be a
PC platform with the blaxxun Contact plug-in. Only blaxxun Contact is
supported.

“Installing a VRML Plug-In (Windows)” on page 2-50 describes how to
install the blaxxun Contact VRML plug-in on a computer running Microsoft
Windows.

Installing a VRML Plug-In (Windows)

If you want to view a virtual world on a client computer, you need to use a
Web browser with a VRML plug-in.

The blaxxun Contact plug-in is provided with the Virtual Reality Toolbox,
but you cannot install the blaxxun Contact plug-in Version 4.4 on a client
computer with the MathWorks installer if you do not have this plug-in
installed.

® Copy the file blaxxuncontact44.exe from your host computer to the client
computer. This file is located at C:\matlabroot\toolbox\vr\blaxxun.

Testing the Installation

Testing the Installation

The Virtual Reality Toolbox includes several Simulink models with the
associated virtual worlds. These models are examples of what you can do with
this toolbox. You can use one of these examples to test the installation of the
Virtual Reality Toolbox, the VRML viewer, and the VRML editor.

This section includes the following topics:

¢ “Running a Simulink Interface Example” on page 2-51 — Open a Simulink
model for an inverted pendulum, start a simulation, and view the pendulum
in a virtual world.

¢ “Running a MATLAB Interface Example” on page 2-56 — View a virtual
world of the MathWorks membrane.

Running a Simulink Interface Example

In the demo directory for the Virtual Reality Toolbox, there is a Simulink
model for a two-dimensional inverted pendulum. This model, which you can
view in three dimensions with the toolbox, has an interactive set point and
trajectory graph.

Before you can run this demo, you have to install MATLAB, Simulink, and
the Virtual Reality Toolbox as follows:

1 In the MATLAB Command Window, type

vrpend

A Simulink window opens with the model for an inverted pendulum.

2-51

2 Installation

vrpend * -0 x|

File Edit Wiew Simulation Format Tools Help

| Madoer 2 Perdulumn 247 P Pendulum.trnsltion
P Perdulurn 52 Manoer XYZ
50 ange 1 P Pole 1 mtation
Coodinates 2D e 20 arge
trRnsfo mation 3D ange 2
_l—h PolkZ. mtation
Folk angke 20
trEnsfo mation
I ilzdee rtmnslation
b d
; FID VR Sink
Position
2dirmensional
Pasition Forze
Cantmlier Arge
|
FPendulum 20 M : @l
Ll
Trjectony
FID [Random
Murmber Gmph
2-dirmensional
Angl
Sontmlier

The Virtual Reality Toolbox viewer opens with a 3-D model of the pendulum.

2-52

Testing the Installation

m Inverted Pendulum =1olx|

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

IPseudoorthographicj J o | ,b,lExaminej v | QT (o} | L] | | ﬁ | (|

|Pseudo orthographic view [r=0.00 [Examine |Pos:[-150.00 100,00 150,00] Dirn[0.66 -0.36 -

2 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Start. A Trajectory Graph window opens, and a simulation starts
running.

2-53

2 Installation

-} Trajectory Graph |0 x|
Trajectory Graph
10 T T T
St i
@
X 0 o] .
-
5l 4
_1 G 1 1 1
-10 -5 [4] 5 10
X Axis

3 In the Virtual Reality Toolbox viewer, point to a position on the blue
surface and left-click.

The pendulum set point, represented by the green cone, moves to a new
location. Next, the path is drawn on the trajectory graph, and then the
pendulum itself moves to the new location.

In the Virtual Reality Toolbox viewer, you see the animated movement of
the pendulum. Use the viewer controls to navigate through the virtual
world, change the viewpoints, and move the set point. For more information
about using the Virtual Reality Toolbox viewer controls, see “Virtual
Reality Toolbox Viewer” on page 6-2.

4 In the Simulink window, double-click the Trajectory Graph block.
The Block Parameters: Trajectory Graph dialog box opens.

5 From the Setpoint mode list, choose Mouse, then click OK.

2-54

Testing the Installation

— Trajectory scope. [mask)]
Trajectorn scope uging MaTLAE graph window. Enter plotting ranges.
—Parameter
ik
|10
PRI
J1o
i
|10
pmas:
J1o
Sample time:
Joz
Setpoint mode IVH FEnEar
Input signal k
YR sensor
[i[3 I Cancel | Help | Appl |

You can now use the trajectory graph as a 2-D input device to set the
position of the pendulum.

6 Move the mouse pointer into the graph area and click.
The set point (red circle) for the pendulum position moves to a new location.
7 In the Simulink window, from the Simulation menu, click Stop.

The trajectory for the pendulum is displayed in the graph as a blue line.

2-55

2 Installation

2-56

-} Trajectory Graph ;lglil

Trajectory Graph
1 T

Y Axis
(=]

8 Close the Virtual Reality Toolbox viewer and close the Simulink window.

You can try other examples in “Simulink Interface Examples” on page 1-16, or
you can start working on your own projects.

Running a MATLAB Interface Example

This model, which can be viewed in three dimensions with the toolbox, has a
MATLAB interface to control the figure in a VRML viewer window.

Additional examples are listed in the table “MATLAB Interface Examples”
on page 1-23.

1 In the MATLAB window, type

vrmemb

MATLAB displays the following messages:

Loading... This example
shows you how to to use a MATLAB generated 3-D graphic object
in the Virtual Reality Toolbox.

Press Enter to start the demonstration.

Testing the Installation

2 Press the Enter key.

The Virtual Reality Toolbox viewer opens with a 3-D model.

_inx|

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

quP|,§,|Emaminej9.|Q:r Q_| * ||ﬁ| L |

I Original view

[original view [r=0.00 [Examine |Pos:[-193.40 -265.15 220.48] Din[0.48 0.67 -y

3 Use the viewer controls to move within the virtual world, or use the demo
dialog box to rotate the membrane. Note that sometimes the Virtual
Reality Toolbox Demo dialog box is hidden behind the viewer window.

-} ¥irtual Reality Toolbox Demo o] oA |

X Rotation 4 I I ﬂ
[
vz Zoom ﬂ I II

2-57

2 Installation

2-58

Simulink Interface

The Virtual Reality Toolbox works with both MATLAB and Simulink.
However, the Simulink interface is the preferred way of working with the
toolbox. It is more straightforward to use and all the toolbox features are
easily accessible through a graphical user interface (GUI).

Associating a Virtual World with Associate a Simulink model with a

Simulink (p. 3-2) virtual world, and connect signals
from the Simulink model to the
virtual world

Using the Simulink Interface Open a Simulink model, display the

(p. 3-11) associated virtual world on a host
computer or on a client computer,
and observe the simulated process in
the virtual world

3 Simulink Interface

Associating a Virtual World with Simulink

3-2

With the Virtual Reality Toolbox you can interface a Simulink block diagram
with a virtual world. The example in this section explains how to display a
simulated virtual world on a host computer. This is the recommended way to
view associated virtual worlds on the host computer.

This section includes the following topics:

¢ “Adding a Virtual Reality Toolbox Block” on page 3-2 — Connect a Simulink
model to a virtual world

¢ “Changing the Virtual World Associated with a Simulink Block” on page
3-9 — Change the virtual world associated with a Simulink model, and
change the signals passed between Simulink and the virtual world

Adding a Virtual Reality Toolbox Block

Simulating a Simulink model generates signal data for a dynamic system. By
connecting the Simulink model to a virtual world, you can use this data to
control and animate the virtual world.

After you create a virtual world and a Simulink model, you can connect the
two with Virtual Reality Toolbox blocks. The example in this procedure
simulates a plane taking off and lets you view it in a virtual world.

Note The examples in this topic are based on the Virtual Reality Toolbox
default viewer. If you choose to use the blaxxun Contact VRML plug-in to
view virtual worlds, you must start and stop the model simulation from the
Simulink window. You cannot start and stop the model simulation from the
blaxxun Contact VRML plug-in.

1 In the MATLAB Command Window, type

vrtut2

A Simulink model opens without a Virtual Reality Toolbox block that
connects the model to a virtual world.

Associating a Virtual World with Simulink

File Edit ‘iew Simulation Format

Tools Help

Fetitude

Fx

Y

2000
Fx 1 j—
E

Takeoff Lift

Plane Weight Gmound
Compensation

.

9510

Gmund J Lift e Ze

(B—»

Clock

Fitch A:

=iz of Rotation

Display Pitch

VA_

Pilot Input

Y

b

Equationz of Motion
(Body Awes)

¥

—
.

WA Signal Expandar

=

Display Position

2 From the Simulation menu, select Normal, then click Start.

Observe the results of the simulation in the scope windows.

3 In the MATLAB Command Window, type

vrlib

The Virtual Reality Toolbox library opens.

3-3

3 Simulink Interface

ClLibrary: vrlib =101 x|

File Edit View Formab Help

Virtual Reality Toolbox 4.4

Copyright 1993-2006 HUMUSOFT s.ro. and The MathiWodes, Inc.

—== TXT
WR

WR Text Output

VR Sink
R IE £
R
WR Flacehalder R Signal Expander

N focas Trapilftio-ri"
4‘-0
on
uttons
-— B

uttons

Joystick Input Magellan Space house

Utilities

4 From the Library window, drag and drop the VR Sink block to the
Simulink diagram. The VR Sink block writes data from the Simulink model
to the virtual world. (For a description of all the Simulink blocks for the
Virtual Reality Toolbox, see Chapter 8, “Blocks — By Category”) You can
then close the Library: vrlib window.

Now you are ready to select a virtual world for the visualization of your
simulation. A simple virtual world with a runway and a plane is in the
VRML file vrtkoff.wrl, located in the vrdemos directory.

5 In the Simulink model, double-click the block labeled VR Sink.

Associating a Virtual World with Simulink

The Parameters: VR Sink dialog box opens.

«): Parameters: ¥R Sink =lol x|

W Sink

Wites Simulink values to vitual world node fields. Fields to be written are marked by
checkboxes in the tree view. Every marked field corresponds to an input port of the block.

Wyarld propertie: ~WRML Tree

s i
ource file ¥ Show nodetypes ¥ Show field types

|| Erowae |
B ro ol loaded

X Mo world filename specified.

ey | = | Reload |

~Output

r Cpen YRML Yiewer automatically

[&llowe viewving from the Internet

Description:

Block propertie:

Sarmple time (-1 for inherit):

0.1

Ok | Cancel | Help | Apply |

6 In the Description text box, enter a brief description of the model. This
description appears on the list of available worlds served by the Virtual
Reality Toolbox server. For example, type

VR Plane taking off

7 At the Source File text box, click the Browse button. The Select World
dialog box opens. Find the directory <matlab root>\toolbox\vr\vrdemos.
Select the file vrtkoff.wrl and click Open.

8 In the Parameters: VR Sink dialog box, click Apply.

A VRML tree appears on the right side, showing the structure of the
associated virtual reality scene.

9 On the left of the Plane (Transform) node, click the + square.

3-5

3 Simulink Interface

The Plane Transform tree expands. Now you can see what characteristics
of the plane can be driven from Simulink. This model computes the position
and the pitch of the plane.

10 In the Plane (Transform) tree, select the translation and rotation
fields.

The selected fields are marked with checks. These fields represent the
position (translation) and the pitch (rotation) of the plane.

). Parameters: ¥R Sink =10 x|

%R Sink

Wirites Sinulink values to virtual world node fields. Fields to be written are marked by
checkhoxes in the tree view . Every marked fisld correspondds to an input port of the klock.

Yol propertie: WRML Tree
[rSouree fie ¥ Show node types ¥ Show field types
ertkoff el Browse ® (Navigationinto) ;I
* (Background)
e | Eclit | Reload | * (DirectionalLight)
* (DirectionalLight)
- Qutput ® (Transform)
X X * (Transform)
r Cpen WRML Wiewer automatically o piswpoint)
¥ Camera (Transtorm)
¥ Ao wiewding from the Internet b Plane (Transfarm)

X addChildren (MFNode)
Description: X removeChildren (MPNode)
O certer (sFvecan
rotation (SFRotation)

O scale (sFvecsn =
D sraleOriertation (SFRotation)

[/ Plare Take-oft

.-I
Block propertie: [whancenter (5Fvecat)
Sample time (-1 far inherit): D bhoxSize (SFYec3f)
> P children (MFNode) =l
Ok | Cancel Help | Apply |

11 Click OK.

In the Simulink diagram, the VR Sink block is updated with two inputs.

Flanz. mtation

Flane tmnslation

WH Sink

3-6

Associating a Virtual World with Simulink

12

13

The first input is Plane rotation. The rotation is defined by a four-element
vector. The first three numbers define the axis of rotation. In this example,
it should be [1 0 0] for the x-axis (see the Pitch Axis of Rotation block in the
model). The pitch of the plane is expressed by the rotation about the x-axis.
The last number is the rotation angle around the x-axis, in radians.

In the Simulink model, connect the line going to the Scope block labeled
Display Pitch to the Plane rotation input.

The second input is Plane translation. This input describes the plane’s
position in the virtual world. This position consists of three coordinates,
X, ¥, z. The connected vector must have three values. In this example, the
runway is in the x-z plane (see the VR Signal Expander block). The y-axis
defines the altitude of the plane.

In the Simulink model, connect the line going to the Scope block labeled
Display Position to the Plane translation input.

After you connect the signals and remove the Scope blocks, your model
should look similar to the figure shown.

Sl wrtutz =]]
Fil= Edit View Simulation Format Tools Help
Atitude [100]
3000 o Fx Pitzh Axis of Rotation
= e .
Plans. mtation
Fz ﬁ 4|—.Plana.t|anslamn
i He Ze | VR Sink
Plane Weight Ground el i = %%
Gormpensation VR
U WR Signal Expander
(D - A ot
-
o |V o
Pilat Input

Equations of Mation
(Body Axes)

3 Simulink Interface

Note Virtual world degrees of freedom have different requested input
vector sizes depending on the associated VRML field types. If the vector
size of the connected signal does not match the associated VRML field
size, an Incorrect input vector size error is reported when you start
the simulation.

14 Double-click the VR Sink block in the Simulink model. A viewer window
containing the plane’s virtual world opens.

EVR Plane Take-off 10l =|

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

ldm s odg|e By o=

IAirport

|airport [T=0.00 [Fy |Pos:[45.61 11.89 30,00] Dir:[-0.95 -0.20 -0.00

15 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Start to run the simulation.

A plane, moving right to left, starts down the runway and takes off into
the air.

Associating a Virtual World with Simulink

m ¥R Plane Take-off _ ol x|

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

Hldm s Sloldale |[EeElr o=

IAirport

[airport [r=5.70 [Fy |Pos:[45.61 11.89 30,00] Dir:[-0.97 -0.23-0.03

Changing the Virtual World Associated with a
Simulink Block

On occasion, you might want to associate a different virtual world with a
Simulink model or connect different signals.

After you associate a virtual world with a Simulink model, you can select
another virtual world or change signals connected to the virtual world. This
procedure assumes that you have connected the vrtut2 Simulink model with
a virtual world. See “Adding a Virtual Reality Toolbox Block” on page 3-2.

1 Double-click the VR Sink block in the model. The viewer opens.

2 Select the Simulation menu Block Parameters option. The Parameters:
VR Sink dialog box opens.

3 At the Source File text box, click the Browse button. The Select World
dialog box opens. Find the directory <matlab root>\toolbox\vr\vrdemos.
Select the file vrtkoff2.wrl, and click Open.

3-9

3 Simulink Interface

3-10

4 In the Parameters: VR Sink dialog box, click Apply.

A VRML tree appears on the right side. Simulink associates a new virtual
world with the model.

5 On the left of the Plane (Transform) node, click the + square.

The Plane Transform tree expands. Now you can see what characteristics
of the plane you can drive from Simulink. This model computes the position.

6 In the Plane Transform tree, select the translation field check box. Clear
the rotation field check box. Click OK.

The VR Sink block is updated and changes to just one input, the Plane
translation. The Virtual Reality block is ready to use with the new
parameters defined.

7 Verify that the correct output is connected to your VR Sink block. The
output from the VR Signal Expander should be connected to the single
input.

Slvrtutz *+ - 1o =]
File Edit Wiew Simulation Format Tools Help
k-
Atitude [100]
4
2000) Fx Fiteh Axis of Rotation -
Fa 1 -
-
qdot Flane trnslation
Fz ﬁ
Gmund Lir ¥e.2a (2 > s VR Sink
Flane Weight Ground %
Sompensation VR
U VR Signal Expandar
(D » A plhit
>
Gk o
Pt Input

Equations of Maotion
(Body Axes)

8 In the Virtual Reality Toolbox viewer, from the Simulation menu, run the
simulation again and observe the simulation.

Using the Simulink Interface

Using the Simulink Interface

You can view a virtual world connected to a Simulink block diagram and make
parameter changes from Simulink or the virtual world.

This section includes the following topics:

* “Displaying a Virtual World and Starting Simulation” on page 3-11 —
Display and interact with a virtual world on your host computer using
the Virtual Reality Toolbox viewer.

* “Viewing a Virtual World with a Web Browser on the Host Computer” on
page 3-14 — Connect to the Virtual Reality Toolbox host to access and
view virtual worlds.

* “Viewing a Virtual World with a Web Browser on the Client Computer” on
page 3-18 — Display and interact with a virtual world on a client computer.

Displaying a Virtual World and Starting Simulation

This example explains how to display a simulated virtual world using the
Virtual Reality Toolbox viewer on your host computer. This is the default and
recommended method for viewing virtual worlds. A Simulink window opens
with the model of a simple automobile. Automobile trajectory (vehicle position
and angle) is viewed in virtual reality:

1 In the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

3-11

3 Simulink Interface

=18l

File Edit VYiew Simulation Format Tools Help

JJhJH N ﬁﬁ:j
> %}
Rotatian ol
WH Sk IE d
gnalErpancer Lol A uto b it mtation
MJ o 1
bl =
i Automobile trnslation
Speed X Integrtor
WR Sink
0.z5
N

¥
|

W ;

Speed I Integr=tor

A VRML viewer also opens with a 3-D model of the virtual world associated
with the model.

3-12

Using the Simulink Interface

m ¥R Car in the Mountains _ ol x|

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

IView‘I-Dbserver qu o of | ,b,lExaminej 9| o Q_| - ||ﬁ| b =

[Examine |Pos:[20.00 5.00 50.00] Dir[0.00-0.20 -0.98]

|View 1 - Cbserver |T=D.DD

2 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Start.

The simulation starts. In the Virtual Reality Toolbox viewer, a car moves
along the mountain road.

3 Use the Virtual Reality Toolbox viewer controls to move the camera within
this virtual world while the simulation is running. For more information on
the Virtual Reality Toolbox viewer controls, see “Virtual Reality Toolbox

Viewer” on page 6-2.

4 In the Virtual Toolbox viewer, from the Simulation menu, click Stop.

Opening a Viewer Window
If you close the viewer window, you might want to reopen it. In the Simulink
model window, double-click the VR Sink block.

3-13

3 Simulink Interface

3-14

Your default viewer opens and displays the virtual scene. For more
information on setting your default viewer, see “Setting the Default Viewer of
Virtual Scenes” on page 2-24.

Multiple instances of the viewer can exist on your screen. A viewer appears
each time you select the File menu New Window option in the Virtual
Reality Toolbox viewer. This feature is particularly useful if you want to view
one scene from many different viewpoints at the same time.

Viewing a Virtual World with a Web Browser on the
Host Computer

Normally, you view a virtual world by double-clicking the VR Sink in the
Simulink model. The virtual world opens in the Virtual Reality Toolbox viewer
or your VRML-enabled Web browser, depending on your DefaultViewer
setting. For more information on setting your default viewer, see “Setting the
Default Viewer of Virtual Scenes” on page 2-24.

Alternatively, you can view a virtual world in your Web browser by selecting
an open virtual world from a list in your Web browser. You can display the
HTML page that contains this list by connecting to the Virtual Reality Toolbox
host. This is the computer on which the toolbox is currently running. You do
not need a VRML-enabled Web browser to display this page.

Note that a virtual world appears on this list in your Web browser only if the
vrworld Description property contains a string. If this property is empty
for a virtual world, that world is not accessible from the remote host. The
simplest way to set a world description is to define the virtual world VRML
file WorldInfo node and fill in the title field for that node. You can set up
the WorldInfo node to look like the following:

WorldInfo {

title "My First World"

info ["Author: XY"]

}

Using the Simulink Interface

The vrworld object uses the title string in the VRML file for the
Description property of the vrworld object. You can change this property
with the Virtual Reality Toolbox MATLAB interface (vrworld/set).

The following procedure describes how to connect to the Virtual Reality
Toolbox host:

1 At the MATLAB command prompt, type
vrbounce

The VR Bouncing Ball demo is loaded and becomes active.

2 Open your VRML-enabled Web browser. In the address line of the browser,
type

http://localhost:8123

Note To connect to the main HTML page from a client computer, type
http://hostname:8123, where hostname is the name of the computer on
which the toolbox is currently running.

The following page is loaded and becomes active.

The main HTML page for the Virtual Reality Toolbox lists the currently
available (active) virtual worlds. In this example, the VR Bouncing Ball
virtual world appears as a link.

3-15

3 Simulink Interface

3-16

a ¥irtual Reality - Microsoft Internet Explorer provided by The Makl - |D|ﬂ

File Edit ‘iew Favorites Tools Help

sBack ~ = - (@ at | Qhsearch [HFavorites GfMedia £# | By S - Z
Address I@ http: flocalhost: 81 23jindes. bl j G0

Virtual Reality Toolbox

Worlds currently avalable: Developed by
s VE Bouncing Ball s Humusoft
Powered by '!
o MATLAR ® o
« WENML 87 ...
Best wiewed by

T ofE]
Contact

3 Click VR Bouncing Ball.

The VR Bouncing Ball virtual world appears in your Web browser.

Using the Simulink Interface

smBack -~ = - (@ at | Qhsearch [F]Favorites GfMedia £ | By S -

+Z} wirtual Reality Toolbox - Microsoft Internet Explorer provided =10l x|

File Edit ‘iew Favorites Tools Help ﬁ

x>

Address I@ http: fflocalhost 5123 warlds| 1 findex, bkl j @G0

-

B

[

From the main HTML page, you can select one of the listed available worlds
or click the reload link to update the status of the virtual worlds supported
by the toolbox. This page does not require the VRML capabilities from the
browser; it is a standard HTML page. Nevertheless, when you click one of
the virtual world links in the list, the browser has to be VRML-enabled to

display the virtual world correctly and to communicate with the Virtual

Reality Toolbox.

3-17

3 Simulink Interface

3-18

Viewing a Virtual World with a Web Browser on the
Client Computer

The Virtual Reality Toolbox allows you to simulate a process on a host
computer while running the visualization of the process on a client computer.
You view the virtual world on the client computer using a Web browser. This
client computer is connected to the host computer through a network using
the TCP/IP protocol. This means you need to know the name or IP address of
the host computer you want to access from the client computer.

Viewing a virtual world on a client computer might be useful for remote
computing, presentation of the results over the Web, or in situations where it
is desirable to distribute computing and graphical power.

This example explains how to display a simulated virtual world on a client
computer. In this case, the client computer is a PC platform with the blaxxun
Contact plug-in. In this example, a Simulink window opens with the model of
a simple automobile. The automobile trajectory (vehicle position and angle)
is viewed in virtual reality:

1 On the host computer, in the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

Using the Simulink Interface

File Edit VYiew Simulation Format Tools Help

=0l x|

il

Rotation

Y

—
o

VR Signal Expander

il

Speed X

Y
|

Integrtor

025

4

Speed I

Integr=tor

_b.

_b.

Autorobile. mtation

Autormobile trnslstion

VR Sink

2 Double-click the VR Sink block. This block is in the right part of the model

window.

A VRML viewer also opens with a 3-D model of the virtual world associated

with the model.

3 In the VRML viewer, select the Simulation menu Block Parameters

option.

A Parameters: VR Sink dialog box opens.

3-19

3 Simulink Interface

3-20

) Parameters: ¥R Sink o [m[4

R Sink

Wiites Simulink values to virtusl world node fields. Fields to be written are marked by
checkhoxes in the tree viewe. Every marked figld corresponcs to an input part of the bliock .

Wit propertis: ~WRML Tree
-5 i
ouree i ¥ Show node types ¥ Show field types
wrmount werl Browse |
b ROOT =
* (Worldinfo)
e | il | I | & (Mavigstionlnfo)
ot P Wiew! (Vigwpaint)
P » Catnera_car (Transform)
v Cpen WRML Wiswer automatically * (DirectionalLight)
& (Background)
5 y
I~ Al wiewding from the Internet » Automoblle. (Transfarm)
X addChildren (MFMode)
o X removeChildren (MFMocde)
Description:

O certer (sFvecst) —
rotation (SFRotation)
O scale (sFvecsn
D scaeOriertation (SFRotation)
translation (SFYec3f)
[bboxCearter (SFyvec3h)
Sample time (-1 for inherit):

[hassize (5Fvecsn |
02 4 | :

O | Cancel | Help | Apply |

IVR Car in the Mourtaing

~Block propertie:

4 Select the Allow viewing from the Internet check box.

Note This option allows any computer connected to the network to view
your model. You should never select this box when you want your model to
be private or confidential.

5 Click OK.

6 On the client computer, open your VRML-enabled Web browser. In the
Address line, enter the address and Virtual Reality Toolbox port number
for the host computer running Simulink. For example, if the IP address of
the host computer is 192.168.0.1, enter

http://192.168.0.1:8123
To determine your IP address on a Windows system,

Click Start. Click Run. Type cmd, and enter ipconfig.

Using the Simulink Interface

To determine your IP address on a UNIX system, type the command

ifconfig device_name

Click OK. An IP Configuration dialog box opens with a list of your IP,
mask, and gateway addresses.

Alternatively, for Windows platforms, you can open a DOS shell and type
ipconfig.

The Web browser displays the main Virtual Reality Toolbox HTML page.
Only one virtual world is in the list because you have only one Simulink
model open.

3-21

3 Simulink Interface

3-22

/3 virtual Reality - Microsoft Internet Explorer provided by The Mathw 101 =l

File Edit Wiew Faworites Tools Help |

d=Back - = - () 7t | ihsearch G Favorites GlfMedia 4 | By S -

»

Address I@ http:filocalhost: 8123 index. html j @GD

Virtual Reality Toolbox

Worlds currently available: Developed by:

o VE Carin the Mountaing » Hummsoft

Powered by
« MATLAR® ‘ \

g

« VEML 37 ...

Best wiewed by

S [OERE]
Contact

|&] Done [| | |EE Localintranet

7 Click VR Car in the Mountains.

The Web browser displays a 3-D model of the virtual world associated
with the model.

Using the Simulink Interface

3 ¥irtual Reality Toolbox - Microsoft Internet Explorer provided by The]]
File Edit Wiew Faworites Tools Help |

d=Back - = - () 7t | iChsearch G Favorites lfMedia 4 | By S -

X

»

Address I@ http:filocalhost: 8123 worlds/ 1 findesx. html j E’J‘)GD

B

|&] Done l_ I_ ’_ [ER Local intranet

[
4

8 On the host computer, in the Simulink window, from the Simulation
menu, click Start.

On the client computer, the animation of the scene reflects the process

simulated in the Simulink diagram on the host computer.

3-23

3 Simulink Interface

3-24

You can tune communication between the host and the client computer by
setting the Sample time and Transport buffer size parameters.

9 Use the Web browser controls to move within this virtual world while the
simulation is running.

10 On the host computer, in the Simulink window, from the Simulation
menu, click Stop. On the client computer, close the Web browser window.

MATLAB Intertace

Although using the Virtual Reality Toolbox with the Simulink interface is the
preferred way of working with the toolbox, you can also use the MATLAB
interface. Enter commands directly in the MATLAB Command Window or
use M-files to control virtual worlds.

Using the MATLAB Interface (p. 4-2) Control virtual worlds by entering
commands directly in the MATLAB
Command Window or by using
M-files

Recording Offline Animations (p. 4-9) Record simulations and object
movement into animation files for
later offline viewing

4 MATIAB Interface

Using the MATLAB Interface

This section includes the following topics:

® “Creating a vrworld Object” on page 4-2 — Create a vrworld object to
connect MATLAB with a virtual world

® “Opening a Virtual World” on page 4-3 — Open a virtual world and scan
its structure

¢ “Interacting with a Virtual World” on page 4-5 — Set new values for the
available virtual world nodes and their fields

® “Closing and Deleting a vrworld Object” on page 4-8 — Close open virtual
worlds and remove them from memory

Creating a vrworld Object

To connect MATLAB to a virtual world and to interact with that virtual world
through the MATLAB command-line interface, you need to create vrworld and
vrnode objects. You cannot directly interact with a virtual world. A virtual
world is defined by a VRML file with the extension .wrl. For a complete list
of virtual world methods, see “vrworld Object Methods” on page 10-2, “vrnode
Object Methods” on page 10-3, and “vrfigure Object Methods” on page 10-3.

Note The Simulink interface and the MATLAB interface share the same
virtual world objects. This enables you to use the MATLAB interface to
change the properties of vrworld objects originally created by Simulink with
Virtual Reality Toolbox blocks.

After you create a virtual world, you can create a vrworld object. This
procedure uses the virtual world vrmount.wrl as an example.

1 Open MATLAB. In the MATLAB Command Window, type

myworld = vrworld('vrmount.wrl')

MATLAB displays output like

myworld =

4-2

Using the MATLAB Interface

vrworld object: 1-by-1

VR Car in the Mountains
(<matlab-root>/toolbox/vr/vrdemos/vrmount.wrl)

2 Type

vrwhos

MATLAB displays the messages

Closed, associated with

‘C:<matlab root>\toolbox\vr\vrdemos\vrmount.wrl'.
Visible for local viewers.

No clients are logged on.

The vrworld object myworld is associated with the virtual world vrmount.wrl.
You can think of the variable myworld as a handle to the vrworld object stored
in the MATLAB workspace.

Your next step is to open a virtual world using the vrworld object. See
“Opening a Virtual World” on page 4-3.

Opening a Virtual World

Opening a virtual world lets you view the virtual world in a VRML viewer,
scan its structure, and change virtual world properties from the MATLAB
Command Window.

After you create a vrworld object, you can open the virtual world by using
the vrworld object associated with that virtual world. This procedure uses

the vrworld object myworld associated with the virtual world vrmount.wrl as
an example:

1 In the MATLAB Command Window, type
open(myworld) ;
MATLAB opens the virtual world vrmount.wrl.

2 Type

4 MATIAB Interface

set (myworld, 'Description', 'My first virtual world');

The Description property is changed to My first virtual world. This

is the description that is displayed in all Virtual Reality object listings, in

the title bar of the Virtual Reality Toolbox viewer, and in the list of virtual
worlds on the Virtual Reality Toolbox HTML page.

3 Display the virtual world vrmount.wrl. Type
view(myworld)

The viewer that is set as the default viewer displays the virtual scene. This
is typically the Virtual Reality Toolbox viewer unless you have a different
viewer set.

Alternatively, you can display the virtual world in a VRML-enabled Web
browser.

1 Repeat steps 1 and 2 of the preceding procedure.
2 Open a Web browser. In the Address box, type

http://localhost:8123

The browser displays the Virtual Reality Toolbox HTML page with a link to
My first virtual world. The number 8123 is the default Virtual Reality
Toolbox port number. If you set a different port number on your system,
enter that number in place of 8123. For more information on the Virtual
Reality Toolbox HTML page, see “Viewing a Virtual World with a Web
Browser on the Host Computer” on page 3-14.

3 If the Web browser has the VRML plug-in installed, in the browser window,
click My first virtual world.

4 Your default VRML-enabled Web browser displays the virtual world
vrmount.wrl.

Using the MATLAB Interface

Note If your Web browser is not VRML-enabled, clicking on a virtual world
link such as My first virtual world results in a broken link message. The
browser cannot display the virtual world. If you get such a message, ensure
that the Web browser is properly enabled for VRML with the blaxxun
Contact plug-in. For details, see Chapter 2, “Installation”.

For more information on changing your default viewer, see “Setting the
Default Viewer of Virtual Scenes” on page 2-24.

Interacting with a Virtual World

In the life cycle of a vrworld object you can set new values for all the available
virtual world nodes and their fields using vrnode object methods. This way,
you can change and control the degrees of freedom for the virtual world from
within the MATLAB environment.

An object of type vrworld contains nodes named in the VRML file using the
DEF statement. These nodes are of type vrnode. For more information, see
“vrworld Object Methods” on page 10-2 and “vrnode Object Methods” on page
10-3.

After you open a vrworld object, you can get a list of available nodes in the
virtual world. This procedure uses the vrworld object myworld and the virtual
world vrmount.wrl as an example:

1 In the MATLAB Command Window, type

nodes (myworld) ;

MATLAB displays a list of the vrnode objects and their fields that are
accessible from the Virtual Reality Toolbox.

Tunnel (Transform) [My first virtual world]
Road (Shape) [My first virtual world]
Bridge (Shape) [My first virtual world]
River (Shape) [My first virtual world]
ElevApp (Appearance) [My first virtual world]
Canal (Shape) [My first virtual world]

4 MATIAB Interface

Wood (Group) [My first virtual world]

Treel (Group) [My first virtual world]

Wheel (Shape) [My first virtual world]
Automobile (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]
Camera_car (Transform) [My first virtual world]
View1l (Viewpoint) [My first virtual world]

2 Type

mynodes = get(myworld, 'Nodes')

MATLAB creates an array of vrnode objects corresponding to the virtual
world nodes and displays

mynodes =
vrnode object: 13-by-1

Tunnel (Transform) [My first virtual world]
Road (Shape) [My first virtual world]

Bridge (Shape) [My first virtual world]

River (Shape) [My first virtual world]

ElevApp (Appearance) [My first virtual world]
Canal (Shape) [My first virtual world]

Wood (Group) [My first virtual world]

Treel (Group) [My first virtual world]

Wheel (Shape) [My first virtual world]
Automobile (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]
Camera_car (Transform) [My first virtual world]
Viewl (Viewpoint) [My first virtual world]

3 Type
whos
MATLAB displays the messages

Name Size Bytes Class

Using the MATLAB Interface

ans 1x1 132 vrfigure object
mynodes 13x1 3564 vrnode object
myworld 1x1 132 vrworld object

Now you can get node characteristics and set new values for certain node
properties. For example, you can change the position of the automobile by
using Automobile, which is the fourth node in the virtual world.

4 Access the fields of the Automobile node by typing
fields(myworld.Automobile)
or

fields(mynodes(10));

MATLAB displays information like the following table.

Field Access Type Sync
addChildren eventIn MFNode off
removeChildren eventIn MFNode off
children exposedField MFNode off
center exposedField SFVec3f off
rotation exposedField SFRotation off
scale exposedField SFVec3f off
scaleOrientation exposedField SFRotation off
translation exposedField SFVec3f off
bboxCenter field SFVec3f off
bboxSize field SFVec3f off

The Automobile node is of type Transform. This VRML node allows you
to change its position by changing its translation field values. From the
list, you can see that translation requires three values, representing
the [x y z] coordinates of the object.

5 Type

view(myworld)

4-7

4 MATIAB Interface

Your default viewer opens and displays the virtual world vrmount.wrl.

6 Move the MATLAB window and the browser window side by side so you
can view both at the same time. In the MATLAB Command Window, type

myworld.Automobile.translation = [15 0.25 20];

MATLAB sets a new position for the Automobile node, and you can observe
that the car is repositioned in the VRML browser window.

You can change the node fields listed by using the function vrnode/setfield.

Note The dot notation is the preferred method for accessing nodes.

Closing and Deleting a vrworld Object

After you are finished with a session, you must close all open virtual worlds
and remove them from memory:

1 In the MATLAB Command Window, type

close(myworld);
delete(myworld);

The virtual world representation of the vrworld object myworld is removed
from memory. All possible connections to the viewer and browser are closed
and the virtual world name is removed from the list of available worlds.

Note Closing and deleting a virtual world does not delete the vrworld object
handle myworld from the MATLAB workspace.

Recording Offline Animations

Recording Offline Animations

The Virtual Reality Toolbox enables you to record animations of virtual scenes
that are controlled by Simulink or MATLAB. You can record simulations
through either the Virtual Reality Toolbox viewer (described in Chapter

6, “Viewing Virtual Worlds”) or the MATLAB interface (described in this
section). You can then play back these animations offline, in other words,
independent of MATLAB, Simulink, or the Virtual Reality Toolbox. You might
want to generate such files for presentations, to distribute simulation results,
or to generate archives.

Note Optimally, use the Virtual Reality Toolbox viewer (Chapter 6, “Viewing
Virtual Worlds”) to record animations of virtual worlds associated with
Simulink models. This method ensures that all necessary virtual world and
vrfigure properties are properly set to record simulations. The Virtual
Reality Toolbox viewer is the recommended interface to record animations. If
you are working with virtual scenes controlled from MATLAB, you can still
record virtual scenes through the MATLAB interface.

You can save the virtual world offline animation data in the following formats:

¢ 3-D VRML file — The Virtual Reality Toolbox traces object movements and
saves that data into a VRML file using VRML97 standard interpolators.
You can then view these files with the Virtual Reality Toolbox viewer. 3-D
VRML files typically use much less disk space than Audio Video Interleave
(AVI) files. If you make any navigation movements in the Virtual Reality
Toolbox viewer while recording the animation, the Virtual Reality Toolbox
does not save any of these movements.

Note If you distribute VRML animation files, be sure to also distribute all
the inlined object and texture files referenced in the original VRML world
file.

® 2-D Audio Video Interleave (AVI) file — The Virtual Reality Toolbox
writes animation data into an .avi file. The Virtual Reality Toolbox
uses vrfigure objects to record 2-D animation files. The recorded 2-D

4-9

4 MATIAB Interface

4-10

animation reflects exactly what you see in the viewer window. It includes
any navigation movements you make during the recording.

Note While recording 2-D .avi animation data, always ensure that the
Virtual Reality Toolbox viewer is the topmost window and fully visible.
Graphics acceleration limitations might prevent the proper recording of
2-D animation otherwise.

This section includes the following topics. These topics use the vrplanets
demo as the example.

® “Animation Recording File Tokens” on page 4-10 — Describes the filename
tokens you can use to direct the Virtual Reality Toolbox viewer to record an
animation.

e “Manual 3-D VRML Animation Recording” on page 4-12 — Describes how
to manually record animation files.

® “Scheduled 3-D VRML Animation Recording” on page 4-18 — Describes
how to perform scheduled animation recording.

* “Viewing Animation Files” on page 4-23 — Describes how to view recorded
animations.

o “MATLAB Animation Recording of Virtual Worlds Not Associated with
Simulink Models” on page 4-24 — Describes how you can record offline
animations for virtual worlds that are not associated with Simulink models.

Animation Recording File Tokens

By default, the Virtual Reality Toolbox records animations in a file named
according to the following format:

%f_anim_%n.<extension>

This format creates a unique filename each time you record the animation.
The Virtual Reality Toolbox places the file in the current directory. %f and %n
are tokens, where %f is replaced with the name of the virtual world associated
with the model and %n is a number that is incremented each time you record
an animation for the same virtual world. If you do not change the default

Recording Offline Animations

filename, for example, if the name of the virtual world file is vrplanets and
you record the simulation for the first time, the animation file is:

vrplanets_anim_1.wrl

If you run and record the simulation a second time, the animation filename
is vrplanets_anim_2.wrl.

Create multiple file names with time or date stamps, with a unique file
created at each run.

You can use a number of tokens to customize the automated generation
of animation files. This section describes how to use these tokens to create
varying animation filenames. The following tokens are the same for .wrl
and .avi files.

Token | Description

%d The full path to the world VRML file replaces this token in

the filename string and creates files in directories relative

to the virtual world file location. For example, the format
%d/animdir/animfile.avi saves the animation into the animdir
subdirectory of the directory containing the virtual world VRML
file. This token is most helpful if you want to ensure that the
virtual world file and animation file are in the same directory.

o°
(ws]

The current day in the month replaces this token in the filename
string. For example, the format %f_anim_%D.wrl saves the
animation to vrplanets_anim_29.wrl for the 29th day of the
month.

o°
—h

The virtual world filename replaces this token in the filename
string and creates files whose root names are the same as those
of the virtual world. For example, the format %f_anim_%D.wrl
saves the animation to vrplanets_anim_29.wrl. This token
might be useful if you use different virtual worlds for one model.

o°
>

The current hour replaces this token in the filename string. For
example, the format %f_anim_%h.wrl saves the animation to
vrplanets_anim_14.wrl for any time between 14:00 and 15:00.

4-11

4 MATIAB Interface

4-12

Token

Description

o°
3

The current minute replaces this token in the filename string.
For example, the format %f_anim_%h%m.wrl saves the animation
to vrplanets_anim_1434.wrl for a start record time of 14:34.

o°
=

The current month replaces this token in the filename string. For
example, the format %f_anim_%M.wrl saves the animation to
vrplanets_anim_4.wrl for a start record time in April.

o°
>

The current incremental number replaces this token in the
filename string and creates rolling numbered filenames such that
subsequent runs of the model simulation create incrementally
numbered filenames. This feature allows you to run a Simulink
model multiple times but create a unique file at each run. For
example, the format %f_anim_%n.wrl saves the animation to
vrplanets_anim_1.wrl on the first run, vrplanets_anim 2.wrl
on the second run, and so forth. This token is useful if you expect
to create files of different parts of the model simulation.

o°
w

The current second replaces this token in the filename string. For
example, the format %f_anim_%h%m%s.wrl saves the animation to
vrplanets_anim_150430.wrl for a start record time of 15:04:30.

o°
=<

The current four-digit year replaces this token in the filename
string. For example, the format %f_anim_%Y.wrl saves the
animation to vrplanets_anim_2005.wrl for the year 2005.

Manual 3-D VRML Animation Recording

This topic describes how to manually record a 3-D animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. In this example, the timing of the animation file derives from the
simulation time. One second of the recorded animation time corresponds
to one second of Simulink time. You create and record the animation file
by interactively starting and stopping the recording from the MATLAB
Command Window.

This procedure uses the vrplanets demo. It describes how to create a VRML
animation filename with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

Recording Offline Animations

vrplanets

The Simulink model appears. Also by default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer does not
appear, double-click the Virtual Reality block in the Simulink model.

To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

If the result shows that only one vrworld object is in the workspace, assign
its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

4-13

4 MATIAB Interface

4-14

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strmatch('Planets',get(worlds, 'Description')));

3 To have the Virtual Reality Toolbox manually record the animation, set the
RecordMode property to manual. Type

set (myworld, 'RecordMode', 'manual');

4 Direct the Virtual Reality Toolbox to record the animation to a VRML
format file. Type

set(myworld, 'Record3D', 'on');

5 Run the Simulink model. From the Simulation menu, select Normal,
then click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer.

¢ From the menu bar, select the Simulation menu Start option to start or
stop the simulation.

¢ From the toolbar, click Start/pause/continue simulation to start the
simulation.

¢ From the keyboard, press Ctrl+T to start the simulation.

6 As the simulation runs, start recording the animation by setting the virtual
world Recording property. Type

set(myworld, 'Recording','on');
This turns on the recording state.
7 When you want to stop the recording operation, type
set(myworld, 'Recording', 'off');

The Virtual Reality Toolbox stops recording the animation. The Virtual
Reality Toolbox creates the file vrplanets_anim_1.wrl in the current

Recording Offline Animations

working directory. If the simulation stops before you stop recording, the
recording operation stops and creates the animation file.

8 Stop the simulation. You can use one of the following from the viewer.

® From the menu bar, select the Simulation menu Stop option to stop
the simulation.

* From the toolbar, click Stop simulation to stop the simulation.

® From the keyboard, press Ctrl+T to stop the simulation.

You do not need to manually stop the recording before stopping the
simulation. If you do not manually stop the recording, the recording
operation does not stop and create the animation file when the simulation
stops.

9 Close and delete the objects if you do not want to continue using them.

Manual 2-D AVI Animation Recording

This topic describes how to manually record a 2-D animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. In this example, the timing of the animation file derives from the
simulation time. One second of the recorded animation time corresponds
to one second of Simulink time. You create and record the animation file
by interactively starting and stopping the recording from the MATLAB
Command Window.

This procedure uses the vrplanets demo. It describes how to create an .avi
animation filename with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model appears. Also by default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer does not
appear, double-click the Virtual Reality block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

4-15

4 MATIAB Interface

4-16

vrwhos

3 If the result indicates that only one vrworld object is in the workspace,
assign its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strmatch('Planets',get(worlds, 'Description')));

If the description string is unique, myworld is assigned the correct virtual
world.

4 To retrieve the handle to the currently displayed the Virtual Reality
Toolbox viewer figure, type

f=get(myworld, 'Figures"')

5 To have the Virtual Reality Toolbox manually record the animation, set the
RecordMode property to manual. Type

set (myworld, 'RecordMode', 'manual');

6 Direct the Virtual Reality Toolbox to record the animation as a .avi format
file. Type

set(f, 'Record2D','on');

Recording Offline Animations

7 Disable the navigation panel. The navigation panel appears at the bottom
of the virtual scene view. You might want to turn off this panel for a cleaner
view of the virtual scene. Type

set(f, 'PanelMode’', 'off');

8 Run the Simulink model. From the Simulation menu, select Normal,
then click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer:

® From the menu bar, select the Simulation menu Start option to start or
stop the simulation.

® From the toolbar, click Start/pause/continue simulation to start the
simulation.

* From the keyboard, press Ctrl+T to start the simulation.

9 As the simulation runs, start recording the animation by setting the virtual
world Recording property. Type

set(myworld, 'Recording','on');
This turns on the recording state.
10 To stop the recording operation, type

set(myworld, 'Recording', 'off');

The Virtual Reality Toolbox stops recording the animation. The Virtual
Reality Toolbox creates the file vrplanets_anim_1.avi in the current
working directory. If the simulation stops before you stop recording, the
recording operation stops and creates the animation file.

11 Stop the simulation. You can use one of the following from the viewer.

¢ From the menu bar, select the Simulation menu Stop option to stop
the simulation.

¢ From the toolbar, click Stop simulation to stop the simulation.

¢ From the keyboard, press Ctrl+T to stop the simulation.

4-17

4 MATIAB Interface

4-18

You do not need to manually stop the simulation. If you do not manually
stop the recording, the recording operation does not stop and create the
animation file until the simulation stops.

12 If you want to enable the Navigation Panel again, type

set(f, 'PanelMode', 'on');

13 Close and delete the objects if you do not want to continue using them.

Scheduled 3-D VRML Animation Recording

This topic describes how to schedule the recording of a 3-D animation using
the MATLAB interface for a virtual world that is associated with a Simulink
model. You control the animation file recording by presetting a time interval.
The Virtual Reality Toolbox records the animation during this interval in
the simulation. In this example, the timing of the recorded animation file
derives from the simulation time. One second of the recorded animation time
corresponds to one second of Simulink time.

This procedure uses the vrplanets demo. It describes how to create a VRML
animation filename with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model is displayed. Also by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the Virtual Reality block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

3 If the result indicates that only one vrworld object is in the workspace,
assign its handle directly to a variable. Type

myworld = vrwho;

Recording Offline Animations

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strmatch('Planets',get(worlds, 'Description')));

4 Set the Virtual Reality Toolbox to record the animation on a schedule by
setting the RecordMode property to scheduled. Type

set (myworld, 'RecordMode', 'scheduled');

5 Direct the Virtual Reality Toolbox to record the animation in a VRML
format file.

set (myworld, 'Record3D', 'on');

6 Select the start and stop times during which you want to record the
animation. For example, enter 5 as the start time and 15 as the stop time.

set(myworld, 'RecordInterval',[5 15]);

Ensure that the recording start time value is not earlier than the start time
of the Simulink model; the recording operation cannot start in this instance.
If the stop time exceeds the stop time of the Simulink model, or if it is an
out of bounds value such as a negative number, the recording operation
stops when the simulation stops. Note that the recording can be slow.

7 Run the Simulink model. From the Simulation menu, select Normal,
then click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer.

¢ From the menu bar, select the Simulation menu Start option to start
the simulation.

4-19

4 MATIAB Interface

4-20

¢ From the toolbar, click Start/pause/continue simulation to start the
simulation.

® From the keyboard, press Ctrl+T to start the simulation.

The simulation runs. The Virtual Reality Toolbox starts recording when
the simulation time reaches the specified start time and creates the file
vrplanets_anim_N.wrl in the current working directory when finished,
where N is either 1 or more, depending on how many file iterations you have.

8 When you are done, stop the simulation. You can use one of the following
from the viewer.

¢ From the menu bar, select the Simulation menu Stop option to stop
the simulation.

¢ From the toolbar, click Stop simulation to stop the simulation.

¢ From the keyboard, press Ctrl+T to stop the simulation.

9 Close and delete the objects if you do not want to continue using them.

Scheduled 2-D AVI Animation Recording

This topic describes how to schedule the recording of a 2-D animation using
the MATLAB interface for a virtual world that is associated with a Simulink
model. You control the animation file recording by presetting a time interval.
The Virtual Reality Toolbox records the animation during this interval in
the simulation. In this example, the timing of the recorded animation file
derives from the simulation time. One second of the recorded animation time
corresponds to one second of Simulink time.

This procedure uses the vrplanets demo. It describes how to create an .avi
animation filename with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type
vrplanets
The Simulink model is displayed. Also by default, the Virtual Reality

Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the Virtual Reality block in the Simulink model.

Recording Offline Animations

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

If the result indicates that only one vrworld object is in the workspace,
assign its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type
worlds = vrwho;

myworld =
worlds(strmatch('Planets',get(worlds, 'Description')));

3 To retrieve the handle to the currently displayed Virtual Reality Toolbox
viewer figure, type

f=get(myworld, 'Figures"')

4 To have Virtual Reality Toolbox manually record the animation, set the
RecordMode property to manual. Type

set (myworld, 'RecordMode', 'scheduled');

5 Direct Virtual Reality Toolbox to record the animation as an .avi format
file. Type

set(f, 'Record2D','on');

4-21

4 MATIAB Interface

6 Select the start and stop times during which you want to record the
animation. For example, enter 5 as the start time and 15 as the stop time.

set(myworld, 'RecordInterval',[5 15]);

Ensure that the recording start time value is not earlier than the start time
of the Simulink model; the recording operation cannot start in this instance.
If the stop time exceeds the stop time of the Simulink model, or if it is an
out of bounds value such as a negative number, the recording operation
stops when the simulation stops. Note that the recording can be slow.

7 Disable the Navigation Panel. The Navigation Panel appears at the bottom
of the virtual scene view. You might want to turn off this panel for a cleaner
view of the virtual scene. Type

set(f, 'PanelMode', 'off');

8 Ensure that the virtual reality figure window is the topmost window.

9 Run the Simulink model. From the Simulation menu, select Normal,
then click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer:

® From the menu bar, select the Simulation menu Start option to start
the simulation.

* From the toolbar, click Start/pause/continue simulation to start the
simulation.

® From the keyboard, press Ctrl+T to start the simulation.

The simulation runs. The Virtual Reality Toolbox starts recording when
the simulation time reaches the specified start time and creates the file
vrplanets_anim_N.avi in the current working directory when finished,
where N is either 1 or more, depending on how many file iterations you have.

10 When you are done, stop the simulation. You can use one of the following
from the viewer:

¢ From the menu bar, select the Simulation menu Stop option to stop
the simulation.

4-22

Recording Offline Animations

¢ From the toolbar, click Stop simulation to stop the simulation.

® From the keyboard, press Ctrl+T to stop the simulation.
11 If you want to enable the navigation panel again, type

set(f, 'PanelMode', 'on');
12 Close and delete the objects if you do not want to continue using them.

Viewing Animation Files

This topic assumes that you have a VRML or .avi animation file that you
want to view. If you do not have an animation file, see “Manual 3-D VRML
Animation Recording” on page 4-12 or “Scheduled 3-D VRML Animation
Recording” on page 4-18 for descriptions of how to create one.

Viewing VRML Files

At the MATLAB window, type vrplay(filename), where filename is the
name of your VRML file. This opens the Virtual Reality animation player and
your file. Using the Virtual Reality animation player GUI, you can control the
playback of your file.

As an example, play the animation file based on the vr_octavia demo by
running vrplay('octavia_scene_anim.wrl').

vrplay works only with VRML animation files created using the Virtual
Reality Toolbox VRML recording functionality.

Other Methods for Viewing VRML Files

1 Alternatively, you can view the VRML file in one of the following ways:

® Double-click the VRML file. A VRML-enabled Web browser opens with
the animation running. To view the resulting animation file, you must
have a VRML-enabled Web browser installed on your system. Also,
ensure that the .wrl extension is associated with the blaxxun Contact
Web browser.

e At the MATLAB window, type

4-23

4 MATIAB Interface

4-24

w=vrview('vrplanets_anim_1.wrl');
set(w, 'TimeSource', 'freerun');

The vrview command displays the default Virtual Reality Toolbox
viewer for the animation file. Setting the TimeSource property of the set
method to 'freerun' directs the viewer to advance its time independent

of MATLAB.
2 To stop the animation, type

set(w, 'TimeSource', 'external');

To close the viewer and delete the world, get the handle of the vrfigure
object and close it, as follows:

f=get(w, 'Figures')
close(f);
delete(w);

Or, to close all vrfigure objects and delete the world, type

vrclose
delete(w);

Viewing AVI Files
1 Change directory to the one that contains the .avi animation file.

2 Double-click that file.

The program associated with .avi files in your system (for example,
Windows Media Player) opens for the .avi file. If your .avi file is not yet
running, start it now from the application. The animation file runs.

MATLAB Animation Recording of Virtual Worlds Not
Associated with Simulink Models

This topic describes how to programmatically record animation files for virtual
worlds that are not associated with Simulink models (in other words, from
the MATLAB interface). In this instance, you must specify the relationship

Recording Offline Animations

between the events that change the virtual world state and the time in the
animation file. This requirement is different from virtual worlds associated
with Simulink models. Virtual worlds that are controlled completely from the
MATLAB interface have no default, intuitive interpretation of time relation
between MATLAB environment models and virtual scenes.

Note Many engineering time-dependent problems are modeled and solved
in MATLAB. For those that have meaningful visual representation, you can
create virtual reality models and animate their solutions. In addition, the
offline animation time can represent any independent variable along which
you can observe and visualize a model solution. Using offline animation files
can bring the communication of such engineering problem resolutions to new
levels. The Virtual Reality Toolbox demo vrheat (heat transfer visualization)
is an example of a time-dependent problem modeled and solved in MATLAB.
Its modified version, vrheat_anim, shows the use of the programming
technique described in this topic.

To record animation files for virtual worlds that are not associated with
Simulink models, note the following guidelines. You should be an advanced
Virtual Reality Toolbox user.

® Retrieve the vrworld object handle of the virtual scene that you want to
record.
® To record 2-D animations,

a Retrieve the corresponding vrfigure object. For 2-D animations, the
Virtual Reality Toolbox records exactly what you see in the viewer
window. Because 2-D animations record exactly what you see in the
Virtual Reality Toolbox viewer window, the properties that control 2-D
file recording belong to vrfigure objects.

b Set the Record2D vrfigure property.

¢ To override default filenames for animation files, set the vrfigure
Record2DFileName property.

e To create 3-D animation files,

a Retrieve the corresponding vrworld object.

4-25

4 MATIAB Interface

4-26

b Set the Record3D vrworld property.

¢ To override default filenames for animation files, set the vrworld
Record3DFileName property.

Set the RecordMode vrworld object property to manual or scheduled. For
optimal results, select scheduled.

If you select scheduled for RecordMode, be sure to also set the vrworld
RecordInterval property to a desired time interval.

To specify that the virtual world time source is an external one, set the
vrworld property TimeSource to external. This ensures that MATLAB
controls the virtual world scene time. Type

set(virtual_world, 'TimeSource', 'external')

To specify time values at which you want to save animation frames,
iteratively set the vrworld Time property. Note that for a smoother
animation, you should set the time at equal intervals, for example, every 5
seconds. Use a sequence like

set(virtual_world, 'Time',time_value)

For example, to set the Time property for vrworld, w, with values increasing
by 10, enter

set(w, 'Time',10)
set(w, 'Time',20)
set(w, 'Time',30)
set(w, 'Time',40);
set(w, 'Time',50);
60)
70)
80)
90)

)
)

)

)

)

set(w, 'Time',
set(w, 'Time',
set(w, 'Time',
set(w, 'Time',
set(w, 'Time',100

)

;
)3
set(w, 'Time',110);
set(w, 'Time',120);
)3
)

)

set(w, 'Time',130
set(w, 'Time',140

Recording Offline Animations

If you select a start time of 60 and a stop time of 120 (as described in
“Scheduled 3-D VRML Animation Recording” on page 4-18), Virtual Reality
Toolbox starts recording at 60 and stops at 120.

Because of the repetitive nature of the time interval setting, set the Time
property in a loop from within a script or program.

e After you set the vrworld Time property, set the virtual scene object
properties as necessary. You should set these properties to values that
correspond to the given time frame to achieve the desired animation effect.

¢ In each time frame, issue the vrdrawnow command for scene changes. This
command renders and updates the scene.

The following code fragment contains a typical loop that iteratively sets the
Time property, changes a virtual scene object property, and calls vrdrawnow to
render the scene:

for time=StartTime:Step:StopTime
% advance the time in the virtual scene
set(myworld, 'Time',time);
% here we change VRML nodes properties
myworld.Car.translation = [time*speed 0 0];
% render the changed position
vrdrawnow;

end

If you set the Time property at or outside the end boundary of RecordInterval,
Virtual Reality Toolbox stops recording. You can then view the resulting

animation file.

For a complete example of how to perform this kind of animation recording,
refer to the Virtual Reality Toolbox vrheat_anim demo.

4-27

4 MATIAB Interface

4-28

Virtual Worlds

Virtual Reality Toolbox includes tools that you can use to edit and create
VRML virtual worlds. For Microsoft Windows platforms, the Virtual Reality
Toolbox includes a VRML editor (V-Realm Builder). For UNIX/Linux
platforms, the default VRML editor is the MATLAB editor. A basic
understanding of these tools and how to use them will help you to get started

quickly.

VRML Editing Tools (p. 5-2)

Deformation of a Sphere Example
(p. 5-5)

VRML Data Types (p. 5-21)

Description of the differences
between general and native editors

Tutorial for creating a simple virtual
world with V-Realm Builder and
associating this virtual world with
Simulink blocks from the Virtual
Reality Toolbox

Description of VRML data types used
by VRML nodes to define objects and
types of data that can appear in the
VRML node fields and events

5 Virtual Worlds

VRML Editing Tools

There is more than one way to create a virtual world described with the VRML
code. For example, you can use a text editor to write VRML code directly, or
you can use a VRML editor to create a virtual world without having to know
anything about the VRML language. However, you need to understand the
structure of a VRML tree to connect your virtual world to Simulink blocks
and signals.

This section includes the following topics:

e “Editors for Virtual Worlds” on page 5-2 — General 3-D and native VRML
editors

¢ “V-Realm Builder” on page 5-4 — Native VRML editor shipped with the PC
version of the Virtual Reality Toolbox

For a description of the tools to view virtual worlds, see Chapter 6, “Viewing
Virtual Worlds”.

Editors for Virtual Worlds

A VRML file uses a standard text format that you can read with any text
editor. Reading the text is useful for debugging, automated processing, and
directly changing VRML code. Also, if you use the correct VRML syntax, you
can use any common text editor to create virtual scenes in the same way you
create HTML pages.

Many people prefer to create simple virtual worlds using their favorite text
editor. However, the primary way for you to create a virtual world is with
a 3-D editing tool. These tools allow you to create complex virtual scenes
without a deep understanding of the VRML language.

These 3-D editing tools offer the power and versatility necessary for creating
many types of practical and technical models. For example, you can import
3-D objects from some CAD packages to make the authoring process easier
and more efficient. For VRML authoring, there are basically two types of
3-D editing tools:

¢ General 3-D authoring packages that can export into VRML format

VRML Editing Tools

e Native VRML authoring tools

General 3-D Editors — General 3-D editors do not use VRML as their native
format. They export their formats to VRML. There are many commercial
packages, such as 3D Studio, SolidWorks, or mantra4D, that can do this.
These tools have many features and are relatively easy to use. General 3-D
editing tools target specific types of work. For example, they can target visual
art, animation, games, or technical applications. They offer different working
environments depending on the application area for which they are designed.
Some of these general 3-D editing tools can be very powerful, expensive, and
complex to learn, but others are relatively inexpensive and might satisfy
your specific needs.

It is interesting to note that the graphical user interfaces for many of the
general commercial 3-D editors use features typical of the native VRML
editing tools. For example, in addition to displaying 3-D scenes in various
graphical ways, they also offer hierarchical tree styles that provide a good
overview of the model structure and a convenient shortcut to 3-D element
definitions.

Native VRML Editors — Native VRML editors use VRML as their native
format. This guarantees that all the features in the editor are compatible
with VRML. Also, native VRML editors can use features that are unique for
the VRML format, like interpolators and sensors.

Unfortunately, there are currently few advanced VRML editors of

commercial quality. Most native VRML editors are in the development

stage and are harder to use than a general 3-D editor. V-Realm

Builder by Ligos Corporation is one of the exceptions. It is one of the

most advanced VRML editing tools currently available for

personal computers. V-Realm Builder is available only for

Windows operating systems. You can access V-Realm Builder documentation at
http://www.mathworks.com/support/product/VR/productnews/productnews.html.

For PCs, the Virtual Reality Toolbox includes V-Realm Builder as a native
3-D editor. For more information, see “V-Realm Builder” on page 5-4 and
“Deformation of a Sphere Example” on page 5-5.

http://www.mathworks.com/support/product/VR/productnews/productnews.html

5 Virtual Worlds

V-Realm Builder

V-Realm Builder is a flexible, graphically oriented tool for 3-D editing and is
available for Windows operating systems only. It is a native VRML authoring
tool that provides a convenient interface to the VRML syntax. Its primary
file format is VRML. Its graphical user interface (GUI) offers not only the
graphical representation of a 3-D scene and tools for interactive creation of
graphical elements, but also a hierarchical tree style (tree viewer) of all the
elements present in the virtual world.

These structure elements are called nodes. V-Realm Builder lists the nodes
and their properties according to their respective VRML node types, and it
supports all 54 VRML97 types. For each type of node, there is a specific tool
for convenient modification of the node parameters. You can access node
properties in two ways:

¢ Using dialog boxes accessible from the tree viewer

® Directly, using a pointing device

In many cases, it is easier to use the tree viewer to access nodes because it
can be difficult to select a specific object in a 3-D scene. The tree also lets you
easily change the nesting levels of certain nodes to modify the virtual world
according to your ideas. In the tree viewer, you can give the nodes unique
names — a feature necessary for working with Virtual Reality Toolbox.

Deformation of a Sphere Example

Deformation of a Sphere Example

The example in this section shows you how to create a simple virtual world
using V-Realm Builder. It does not describe everything you can do with
V-Realm Builder, but it does describe the basics to get you started.

This example assumes you finished the installation of V-Realm Builder using
the function vrinstall. See “Installing the VRML Editor (Windows)” on
page 2-29.

This section includes the following topics:

® “Defining the Problem” on page 5-5

® “Adding a Virtual Reality Toolbox Block” on page 5-6

® “Creating a Sphere in a Virtual World” on page 5-8

® “Creating a Box in a Virtual World” on page 5-13

® “Connecting a Simulink Model to a Virtual World” on page 5-17

Defining the Problem

Suppose you want to simulate and visualize in virtual reality the deformation
of a sphere. In your virtual world, you want to have two boxes representing
rigid plates (B1, B2) and an elastic sphere (S) between them. All three of
the objects are center-aligned along the x-axis. The boxes B1 and B2 move
toward S with identical velocities, but they move in opposite directions. As
they reach the sphere S, they start to deform it by reducing its x dimension
and stretching it in both its y and z dimensions.

Positions and dimensions of the objects are listed in the following table.

Object Center Position Dimensions
B1 [3 0 0] [0.3 1 1]
B2 [-3 0 0] [0.3 1 1]
S [0 0 O] r=20.9

5-5

5 Virtual Worlds

5-6

Your first task is to open a Simulink model and add a Virtual Reality Toolbox
block to your model. See “Adding a Virtual Reality Toolbox Block” on page 5-6.

The Virtual Reality Toolbox includes the tutorial model vrtut3.mdl. This is a
simplified model in which the deformation of an elastic sphere is simulated.
After collision with the rigid blocks, the sphere’s x dimension is decreased by
a factor from 1 to 0.4, and the y and z dimensions are expanded so that the
volume of the deformed sphere-ellipsoid remains constant. Additional blocks
in the model supply the correctly sized vectors to the Virtual Reality Toolbox
block. The simulation stops when the sphere is deformed to 0.4 times its
original size in the x direction.

Adding a Virtual Reality Toolbox Block

This procedure uses the Simulink model vrtut3.mdl as an example to explain
how to add a Virtual Reality Toolbox block to your model. The model generates
the values for the position of B1, the position of B2, and the dimensions of S
for the problem previously defined. See “Defining the Problem” on page 5-5.

1 From the directory C: \matlabroot\toolbox\vr\vrdemos\, copy the file
vrtut3.mdl to your MATLAB working directory.

2 Start MATLAB, and then change the current directory to your MATLAB
working directory.

3 In the MATLAB Command Window, type

vrtut3

A Simulink window opens with a model that contains Virtual Reality
Toolbox VR Signal Expander blocks, but no VR Sink block to write data
from the model to Virtual Reality Toolbox. Instead, this model uses Scope
blocks to temporarily monitor the relevant signals.

Deformation of a Sphere Example

File Edit Wiew Simulation Format Tools Help

P

¥

e
-

VR Signal Expander

B1 Velocity B1 X Position

L

E1 Trnslation

P

o =

Symretny

WA Signal Expander!

Bl Thickness /2

5 Deformation in X Conversion:
Position to Scalk

Initial 5 Radius
Stop Condition “Z Deformation

¥ Defomation

F Y

¥

5 Scaling
in XNZ

L

B2 Tmnslation

5 scak

4 From the MATLAB Command Window, type

vrlib

The Virtual Reality Toolbox library opens.

5-7

5 Virtual Worlds

S]Library: vrlib 1ol x|

File Edit WYiew Format Help

Virtual Reality Toolbox 4.4

Copyright 1998-2005 HUMUSOFT =s.r.o. and The MathiWods, Inc.

—== TXT
WR

WR Text Output

WR Sink

= —_—
b VR

WR Placeholder WR Signal Expander

. Axes Trapslation |
.
L tion
Buttons
-_—

.~ Buttons

Joystick Input Magellan Space Mouse

Utilities

5 From the Library window, drag and drop the VR Sink block to the Simulink
diagram. You can then close the Library: vrlib window.

Your next task is to create a virtual world that you will associate with the VR
Sink block. See “Creating a Sphere in a Virtual World” on page 5-8.

Creating a Sphere in a Virtual World

You need to create a virtual world before you can connect it to a Simulink
model and visualize signals.

After you add a VR Sink block to your Simulink model, you can create a
virtual world using the V-Realm Builder. This procedure uses the model
vrtut3.mdl as an example and assumes that you have opened the model
and that you have added a VR Sink block. See “Adding a Virtual Reality
Toolbox Block” on page 5-6.

Deformation of a Sphere Example

1 From the Microsoft Windows task bar, click Start, and then click Run.
2 In the Run dialog box, enter
matlabroot\toolbox\vr\vrealm\program\vrbuild2.exe

The V-Realm Builder application window opens.

3 From the File menu, click New or click the blank page icon 2'
In the left pane, V-Realm Builder displays an empty VRML tree, and in the
right pane it displays an empty virtual world.

4 On the toolbar, click the sphere icon |9|

In the left pane you can see the VRML tree for a sphere. This tree includes
the nodes Transform, Shape, Appearance, Material, and Sphere. A yellow
icon indicates the field of a node.

5 Virtual Worlds

B ¥-Realm Builder 2.0 - [YRML1] -3l
@F\Ie Edit Wiew MNodes Libraries Manipulators Mode ‘Window Help - E‘ﬂ

Die| 4(%|@| 2] 2|L] & F|k|a|s|m 8]4]0(e|T/w| /o]
M gl¢|vle| 8|7 D@ [+ 8 70 Boojojo
€| B#| #lwn| mzold] ¢|o|s)z

=W Mew Warld
=-Tey Transform
center
il [] rotation
— scale
[f] scaleCrientation
translation
— bboxCenter
bbaxSize
ol] children
Ll = Be shape
-1-[A] appearance
=2 Appearance
=[] material
w-) Material
M texture
@] textureTransform
--[[] geometry
£

For Help, press F1 PICK |Speed: 1 | 1:43 PM

The top-level node is the Transform node. This grouping node allows you to
change the position and scale of objects (children) that are part of this node.
Its subtree consists of one object, which is described in the Shape node. The
Shape node contains the appearance and geometry fields.

5 Expand the Sphere node.

The radius field appears. The yellow icon indicates the type of value. In
this case, f indicates a value with the type SFFloat. SFFloat is a 32-bit
floating-point value.

5-10

Deformation of a Sphere Example

= New Wworld
= 1 Transfarm
----- % center
----- rakation
----- scale
----- [r] scaleCrientation
----- translation
----- bboxiCenter
----- bboxSize
H--@] children
B .0 shape
= [n] appearance
fEe 42 Appearance
-] material
: - E Material
] texture
: ‘o[textureTransform
E| @ geometry

|1| rau:llus

6 Double-click the radius field.
The Edit SFFloat dialog box opens.

7 In the text box, enter 0.9, and then click OK. In the right pane, the sphere
appears smaller.

|u.9| il

Cancel

i

8 Under the Shape node, expand the appearance field. Under the appearance

field, expand the Appearance node. Under the Appearance node, expand
the material field. Under the material field, expand the Material node.

5 Virtual Worlds

- New World
E|---T{} TransForm

lg[r] rokation
: scale
-[r] scaleCrientation
translation
bboxCenter
bboxSize
EI@] children

=B shape

El-M appearance

Elp Appearance
=[] material
SR 1ateri

- [#] ambientIntensity
~[€] diffuseCalor
~[E] emissiveCalor
~[F] shininess
~[€] specularCalor

----- [n] textureTransform
=] geametry
=-(0) Sphere

9 Under the Material node, double-click the diffuseColor field.
The Edit Color dialog box opens.

10 Set the color to blue or any other color you would like, and then click OK.

5-12

Deformation of a Sphere Example

Edit Color x|

Mew Color - Current Color
— Shider Display —

* Yalus

" RGE

" Hsy

" RGBY

" RGEHSY
[~ wirsiwiG

‘ Value:lﬁ W ‘
ak I Cancel |

s
B

11 If you want to check or modify the position of the sphere, double-click the
translation field under the Transform node. You do not need to change
the default values from [0 0 0].

In this exercise, you want to deform the sphere. You can apply deformation
by changing the scale field of the sphere’s Transform node. The Virtual
Reality Toolbox requires you to assign a name to this node so that it can
access it. In VRML syntax, the named nodes are indicated by the "DEF
Name Node" statement. V-Realm Builder lists node names next to their
icons in the tree viewer.

12 Click the Transform node, and then click the node a second time.
The text appears in edit mode.

13 Enter a name for the node. For example, enter the letter S, and then click
anywhere to exit the text mode.

Your next task is to create two boxes in the virtual world. See “Creating a
Box in a Virtual World” on page 5-13.

Creating a Box in a Virtual World
This topic describes how to create two boxes in the virtual world.

5-13

5 Virtual Worlds

5-14

1 In the tree, click New World (the topmost item). On the toolbar, click the

box icon gl

A new box object appears at the same position as the sphere centered in
the origin of the coordinate system. Note that the sphere is hidden behind
the box and currently is not visible.

2 Double-click the translation field under the Transform node.

The Edit Vector 3 dialog box opens. Notice that there are two Transform
nodes. Use the one with the Box node in its subtree.

3 Select the X Axis check box. In the text box below, enter 3, then click OK.

Editvectors x|
W % Auiz I~ ¥ iz [Z iz Adjustment [nc.
|3.uunu ID.DDDD ID.DDDD |n.100000 ﬂ

Adjust axis values:
' J
oK I Cancel | Reset |

The position of the box is set to [3 0 0].
4 Expand the Box node. Double-click the size field under the Box node.

The Edit Vector 3 dialog box opens.

Editvectors x|
[¥ Auiz I~ ¥ iz [Z iz Adjustment [nc.
|2.uunu |2.uunu |2.uunu |n.100000 ﬂ

Adjust axis values:
' J
oK I Cancel | Reset |

5 Set the values to [0.3 1 1], and then click OK.

Deformation of a Sphere Example

Note You might need to select the diffuseColor node to adjust the box.

The following figure shows the tree with the expanded branch of the box.

B ¥-Realm Builder 2.0 - [YRML3] -3l
@F\Ie Edit Wiew MNodes Libraries Manipulators Mode ‘Window Help - E‘ﬂ

Die| 4(%|@| 2] 2|L] & F|k|a|s|m 8]4]0(e|T/w| /o]
M g|¢|vle| 8|7 D@ 8 70 Boojojo
€| B#| #lwn| mzol<] ¢|o|s)z

New World -

L%y Transform

center

[rotation

— scale

[[] scaleCrientation
translation
— bboxCenter
boxSize:

ol B children

Ll = Be shape
-] appearance

-] geometry
= Box
size
EE
center
[] ratation
scale
[[] scaleCrientation
translation
bboxCentar
bboxsize
= children
=-Ba Shape
—-[n] appearance
=-J2 Appearance
=-[m] material

o=
=l Material
[IR 4
E - —————]
For Help, press F1 PICK |Speed: 1 | 2:28 PM

6 Create a second box the same way you created the first box.

7 To move the second box to its correct place, double-click the translation
field of the second Transform node, and change its positionto [-3 0 0].

8 Double-click the size field under the Box node. Set the values to [0.3 1
1], and then click OK.

The scene is now complete.

5-15

5 Virtual Worlds

5-16

9 To access the positions of the boxes from a Virtual Reality Toolbox block,
give each Transform node a name. For example, set the name of the first
Transform node to B1 and the second Transform node to B2. The Virtual

Reality Toolbox allows you to access fields of only those nodes that are

named in virtual worlds.

i
& Fle Edit View Nodes Lbraries Maripulators Mode Window Help =&l x|
Dicla| & |=l8| 2| 22| &|6s|a|sm sja1]jo|T|m| |l
I Zle|vie| 87 D@ [+e [sjoooo
9| B|w| e miz|o)id] elo|]z
& ?iwa\;u'orld =
[E center
— | @ rotation
- [E scale
[scaleOrientation
translation
—A| [bboxCenter
[E bboxsize
oo (| =m0 children

) =B Shape
appearance:
- J2 Appearance
=[] geometry
=@ Bax
size

3 B2
center
[rotation
scale
[scaleCrientation
translation
bboxCenter
bboxSize
2 children
=B Shape
=] appearance
i S Appearance
=[] geometry

L

For Help, press F1

PICK |Speed: 1 | 2:38 PM

10 Save the virtual world as vrtut3.wrl in the same working directory where
the file vrtut3.mdl resides, and then exit V-Realm Builder.

Caution If you want to use your virtual worlds with the Virtual Reality
Toolbox, do not save them in a compressed Gzip format.

Your next task is to connect the model outputs to the Virtual Reality Toolbox
block in your Simulink model. See “Connecting a Simulink Model to a Virtual

World” on page 5-17.

Deformation of a Sphere Example

Connecting a Simulink Model to a Virtual World

After you create a virtual world and a Simulink model, and add a Virtual
Reality Toolbox block to your model, you can define the associations between
the model signals and the virtual world. This procedure uses the model
vrtut3.mdl as an example. It assumes that you have opened the model and
that you have added a VR Sink block. See “Adding a Virtual Reality Toolbox
Block” on page 5-6.

1 In the Simulink window, double-click the VR Sink block.
The viewer appears.

2 Select the Simulation menu Block Parameters option
The Parameters: VR Sink dialog box opens again.

3 Click Browse.
The Select World dialog box opens.

4 Select vrtut3.wrl, and then click Open.

5 In the Output pane, select the Open VRML viewer automatically
check box.

This check box specifies that a viewer for the virtual world starts when you
run the model.

6 In the Description field, type vrtut3.

7 Click Apply in the Parameters: VR Sink dialog box.

8 In the tree viewer, select the S scale, B1 translation, and B2 translation
check boxes as the nodes you want to connect to your model signals. Click
OK to close the dialog box.

The Virtual Reality Toolbox block appears with corresponding inputs.

9 Connect these input lines to the matching signals in the model. These
signals were originally connected to Scope blocks.

5-17

5 Virtual Worlds

5-18

File Edit Wiew Simulation Format Tools Help

=]

Y

l
!

B1Vebcity B1X Position

B1 Thickness 7 2

—
-

VR Signal Expandar

| Trnsform_EB2.tmnslat

T
-

VR Signal Expanderi

| Trmnsform_Edtmnslas
Trnsfarm_g.scake
WR Sink

hd

& Deformation in X Gomersian:
Position to Scalke

Initial § Radius
Stap Gandition

X Defomnation

Vo lume

YZDeformation 5 Sealing

in XYZ

10 Double-click the VR Sink block.

The viewer appears.

11 Select the Simulation menu Block Parameters option.

12 In the Parameters: VR Sink dialog box, click the View button.

Your default viewer opens and displays the virtual world. For more
information on changing your default viewer, see “Setting the Default
Viewer of Virtual Scenes” on page 2-24.

Deformation of a Sphere Example

l-HE— ~lolx|

File Wiew Wiewpoints Mavigation Rendering Simulation Recording Help

| I sl ol dd|e B

Mo wigwpoink T=0.00 Fly Pos:[0.00 0,00 10,007 Dir:[0.00 0,00 -1,

13 In the Simulink window, from the Simulation menu, click Start.

In your default viewer, you see a 3-D animation of the scene. Using the
viewer controls, you can observe the action from various points.

When the width of the sphere is reduced to 0.4 of its original size, the
simulation stops running.

5-19

5 Virtual Worlds

L HE— ~lolx|

File Wiew Wiewpoints Mavigation Rendering Simulation Recording Help

| I sl ol dd|e B

Mo wigwpoink T=25.30 Fly Pos:[0.00 0,00 10,007 Dir:[0.00 0,00 -1,

This example shows you how to create and use a very simple virtual reality
model. Using the same method, you can create more complex models for
solving the particular problems that you face.

5-20

VRML Data Types

VRML Data Types

VRML data types are used by VRML nodes to define objects and types of data
that can appear in the VRML node fields and events.

This section includes the following topics:

e “VRML Field Data Types” on page 5-21
e “VRML Data Class Types” on page 5-23

VRML Field Data Types

Virtual Reality Toolbox provides an interface between the MATLAB and
Simulink environment and VRML scenes. With this interface, you can set and
get the VRML scene node field values. To work with these values, you must
understand the relationship between VRML data types and the corresponding
MATLAB data types. The following table illustrates the VRML data types
and how they are converted to and from MATLAB types.

For a detailed description of the VRML fields, refer to the VRML97 Standard.

VRML Type Description VR Toolbox Type
SFBool Boolean value true or false. | logical
SFFloat 32-bit, floating-point value. | single
SFInt32 32-Dbit, signed-integer int32
value.
SFTime Absolute or relative time double
value.
SFVec2f Vector of two floating-point | Single array (1-by-2)

values that you usually
use for 2-D coordinates.
For example, texture
coordinates.

SFVec3f Vector of three Single array (1-by-3)
floating-point values that
you usually use for 3-D
coordinates.

5-21

5 Virtual Worlds

VRML Type Description VR Toolbox Type
SFColor Vector of three Single array (1-by-3)
floating-point values
you use for RGB color
specification.
SFRotation Vector of four floating-point | Single array (1-by-4)
values you use for
specifying rotation
coordinates (x, y, z) of
an axis plus rotation angle
around that axis.
SFImage Two-dimensional array N/A
represented by a sequence
of floating-point numbers.
SFString String in UTF-8 encoding. | char
Compatible with ASCII,
allowing you to use Unicode
characters.
SFNode Container for a VRML N/A
node.
MFFloat Array of SFFloat values. Single array (n-by-1)
MFInt32 Array of SFInt32 values. int32 array (n-by-1)
MFVec2f Array of SFVec2f values. Single array (n-by-2)
MFVec3f Array of SFvec3f values. Single array (n-by-3)
MFColor Array of SFColor values. Single array (n-by-3)
MFRotation Array of SFRotation Single array (n-by-4)
values.
MFString Array of SFString values. | char array (n-by-1)
MFNode Array of SFNode values. N/A

Virtual Reality Toolbox can work with various MATLAB data types,
converting them if necessary:

5-22

VRML Data Types

¢ The setfield function (and its dot notation form) and VR Sink inputs
accept all meaningful data types on input. Both convert the data types into
natural VRML types as necessary. The data types include logicals, signed
and unsigned integers, singles, and doubles.

¢ The getfield function (and its dot notation form) return their natural data
types according to the table above.

To ensure backward compatibility with existing models and applications,
use the Virtual Reality Toolbox vrsetpref function to define the data type
support. Their names are as follows:

Property Description

DataTypeBool Specifies the boolean data type for vrnode/setfield
and vrnode/getfield. Valid values are 'logical' and
‘char'. If set to 'logical', the VRML boolean data
type is returned as a logical value. If set to 'char', the
VRML boolean data type is returned 'on' or 'off'.

DataTypeInt32 Specifies the int32 data type for vrnode/setfield
and vrnode/getfield. Valid values are 'int32' and
'double’. If set to 'int32', the VRML int32 data type
is returned as int32. If set to 'double', the VRML
int32 data type is returned as 'double’.

DataTypeFloat Specifies the float data type for vrnode/setfield
and vrnode/getfield. Valid values are 'single' and
'double'. If set to 'single', the VRML float and
color data types (the types of most VRML fields) are
returned as 'single'. If set to 'double', the VRML
float and color data types are returned as 'double’.

VRML Data Class Types

A node can contain four classes of data: field, exposedField, eventIn, and
eventOut. These classes define the behavior of the nodes, the way the nodes
are stored in the computer memory, and how they can interact with other
nodes and external objects.

5-23

5 Virtual Worlds

VRML Data Class | Description

eventIn An event that can be received by the node

eventOut An event that can be sent by the node

field A private node member, holding node data

exposedField A public node member, holding node data
eventin

Usually, eventIn events correspond to a field in the node. Node fields are
not accessible from outside the node. The only way you can change them is
by having a corresponding eventIn.

Some nodes have eventIn events that do not correspond to any field of that
node, but provide additional functionality for it. For example, the Transform
node has an addChildren eventIn. When this event is received, the child
nodes that are passed are added to the list of children of a given transform.

You use this class type for fields that are exposed to other objects.

eventOut

This event is sent whenever the value of a corresponding node field that
allows sending events changes its value.

You use this class type for fields that have this functionality.

field

A field can be set to a particular value in the VRML file. Generally, the field
is private to the node and its value can be changed only if its node receives
a corresponding eventIn. It is important to understand that the field itself
cannot be changed on the fly by other nodes or via the external authoring
interface.

You use this class type for fields that are not exposed and do not have the
eventOut functionality.

5-24

VRML Data Types

exposedField

This is a powerful VRML data class that serves many purposes. You use this
class type for fields that have both eventIn and eventOut functionality. The
alternative name of the corresponding eventIn is always the field name with
a set_ prefix. The name of the eventOut is always the field name with a
_changed suffix.

The exposedField class defines how the corresponding eventIn and
eventOut behave. For all exposedField classes, when an event occurs, the
field value is changed, with a corresponding change to the scene appearance,
and an eventOut is sent with the new field value. This allows the chaining of
events through many nodes.

The exposedField class is accessible to scripts, whereas the field class is not.

5-25

5 Virtual Worlds

5-26

Viewing Virtual Worlds

After you create a virtual world in VRML (as described in Chapter 5, “Virtual
Worlds”), you can visualize that virtual world with the Virtual Reality Toolbox
viewer or with a VRML-enabled Web browser. The Virtual Reality Toolbox
includes its own viewer as the default for all supported platforms. It is the
preferred method of viewing virtual worlds. For PC platforms, Virtual Reality
Toolbox also includes a VRML plug-in (blaxxun Contact) that you can use as
an alternative viewer for virtual worlds. A basic understanding of these tools
and how to use them will help you to get started quickly.

Virtual Reality Toolbox Viewer Description of the Virtual Reality

(p. 6-2) Toolbox viewer

blaxxun Contact VRML Plug-In Description of the blaxxun Contact
(p. 6-47) VRML plug-in that you can use to

view virtual worlds

6 Viewing Virtual Worlds

Virtual Redlity Toolbox Viewer

The Virtual Reality Toolbox contains a viewer as the default method for
viewing virtual worlds. You can use this viewer on any supported operating
system. For a list of supported operating systems, see “System Requirements”
on page 2-7. The following topics provide an overview of the features and
controls of the viewer. This section uses the vrpend, vrplanets, and vrtut1
demos to illustrate the viewer features.

1 Select a Virtual Reality demo and type that demo’s name in the MATLAB
Command Window. For example:

vrpend

The Simulink model is displayed. By default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer is not
displayed, double-click the VR Sink block in the Simulink model.

2 Inspect the viewer window.

The Virtual Reality Toolbox viewer displays the virtual scene. The top of
the viewer contains a menu bar and toolbar. The bottom of the viewer
contains a navigation panel. These three areas give you alternate ways to
work with the virtual scene.

By default, the Virtual Reality Toolbox viewer displays the virtual scene
with a navigation panel at the bottom.

Virtual Reality Toolbox Viewer

Menu bor Toolbor

m Inverted Pendulum - o] x|
Mavigation Rendering Simulation Recording Help

File Wiew Wiewpoints

Freudo Drthographicj o - | X IEr:amine 'I e, | o q | L | | 5| | P/-

Pseuda arthographic view T=0.00 Excamine |P05:[-18E|.DD ltlﬁ\q:l 180.00] Dir:[0.66 -0,36 -C

\Huviguﬁnn punel

Note The Virtual Reality Toolbox viewer settings are saved when you
save your model file.

Menu Bar
The Virtual Reality Toolbox viewer menu bar has the following menus:

¢ File — General file operation options, including:

6 Viewing Virtual Worlds

= New Window — Opens another window for the virtual scene. You
might want to use this option if you want to have multiple views of the
virtual scene open.

= Open in Editor — Opens the default editor (V-Realm Builder) for the
current virtual world. The editor opens with the virtual world already
loaded into the editor.

= Reload — Reloads the saved virtual world. Note that if you have created
any viewpoints in this session, they are not retained unless you have
saved those viewpoints with the Save As option.

= Save As — Allows you to save the virtual world.

= Close — Closes the viewer window.

View — Enables you to customize the Virtual Reality viewer, including:
= Toolbar — Toggles the toolbar display.

= Status Bar — Toggles the status bar display at the bottom of the viewer.
This display includes the current viewpoint, simulation time, navigation
method, and the camera position and direction.

= Navigation Zones — Toggles the navigation zones on/off (see
“Navigation” on page 6-10 for a description of how to use navigation
zones).

= Navigation Panel — Controls the display of the navigation panel,
including toggling it.

= Zoom In/Out — Zooms in or out of the viewer scene.

= Normal (100%) — Returns the zoom to normal (initial viewpoint
setting).

Viewpoints — Manages the virtual world viewpoints.

Navigation — Manages scene navigation.

Rendering — Manages scene rendering (see “Rendering” on page 6-38).
Simulation — Manages model starts/stops and VR block parameters.

Recording — Manages frame capture and animation recording file
parameters.

Help — Displays the Help browser for the Virtual Reality Toolbox viewer.

Virtual Reality Toolbox Viewer

Toolbar

The Virtual Reality Toolbox viewer toolbar has buttons for some of the more
commonly used operations available from the menu bar. These buttons
include:

Drop-down list that displays all the viewpoints in the virtual world

o

Return to viewpoint button

Create viewpoint button -

S

Drop-down list that displays the navigation options Walk, Examine, and Fly

Straighten up button

Undo move button =2

-
Zoom in/out buttons & , Q
Start/stop recording button *

Block parameters button =

Capture a frame screenshot button o
Start/pause/continue simulation button *

Stop simulation button ™

Navigation Panel

The Virtual Reality Toolbox viewer navigation panel has navigation controls
for some of the more commonly used navigation operations available from
the menu bar. These controls include:

6 Viewing Virtual Worlds

6-6

Slide left/right

Viewer Help

7N\~

Hovigution method — Wirefrume topple

Hide punel
Hext/ previous viewpoint Hendlight togple
Go to defoult viewpoint

Hovigotion wheel

¢ Hide panel — Toggles the navigation panel.
¢ Next/previous viewpoint — Toggles through the list of viewpoints.

¢ Return to default viewpoint — Returns focus to original default
viewpoint.

e Slide left/right — Slides the view left or right.

¢ Navigation wheel — Moves view in one of eight directions.
¢ Navigation method — Manages scene navigation.

* Wireframe toggle — Toggles scene wireframe rendering.

¢ Headlight toggle — Toggles camera headlight.

e Help — Invokes the viewer online help.

The following table summarizes the possible operations from the menu bar,
toolbar, navigation panel, and keyboard.

Menu Navigation | Keyboard
Operation Bar Toolbar | Panel Shortcut
New Window X
Open in Editor X
Reload X
Save As X

Virtual Reality Toolbox Viewer

Operation

Menu

"
o
H

Toolbar

Navigation
Panel

Keyboard
Shortcut

Close

>

Toolbar

Status Bar

Navigation Zones

F7

Navigation Panel

Zoom In

>

Zoom Out

Normal (100%)

Previous
Viewpoint

PRI DA DR DA |]| M)

Page Up

Next Viewpoint

o

Page Down

Return to
Viewpoint

Home

Go to Default
Viewpoint

Create Viewpoint

Remove Current
Viewpoint

>

Pseudo
orthographic view

o

Close View

View from top

X axis

7 axis

Method

PR | 4

Shift+W,
Shift+E,
Shift+F

Speed

6-7

6 Viewing Virtual Worlds

Menu Navigation | Keyboard
Operation Bar Toolbar | Panel Shortcut
Straighten Up X X F9
Undo Move X X Backspace
Camera Bound to | X F10
Viewpoint
Antialiasing X F8
Headlight X X F6
Lighting X
Textures X
Maximum Texture | X
Size
Transparency X
Wireframe X X F5
Start (Simulation) | X X Ctrl+T
Stop (Simulation) |X X Ctrl+T
Block Parameters |X X
Start Recording X X Ctrl+R
Stop Recording X X Ctrl+R
Capture Frame X X Ctrl+I
Capture and X X
Recording
Parameters
Slide Left X
Navigation Wheel X
Slide Right X
Help X X

Virtual Reality Toolbox Viewer

Menu Navigation | Keyboard

Operation Bar Toolbar | Panel Shortcut

Pan Left/Right Left/Right
Arrows, Shift
Left/Right
Arrows

Pan Up/Down Up/Down
Arrows

Move Shift+Up/

Forward/Backward Down Arrows

Orbit Around Ctrl+Left/

Selected Object Right/Up/

Down Arrow

Slide Alt+arrows

Left/Right/Up/

Down

Tilt Left/Right Shift+Alt+
Left/Right
Arrow

Starting and Stopping Simulations

You can start and stop simulations of the virtual world from the Virtual
Reality Toolbox viewer through the menu bar, toolbar, or keyboard.

® From the menu bar, select the Simulation menu Start or Stop option to

start or stop the simulation.

* From the toolbar, click Start/pause/continue simulation or Stop
simulation to start or stop the simulation.

® From the keyboard, press Ctrl+T to toggle between starting or stopping

the simulation.

6-9

6 Viewing Virtual Worlds

Note The Ctrl+T operation is available only if you started the viewer from
a Simulink model. If you start the viewer through the MATLAB interface,

no Simulink model is associated. You cannot start and stop the simulation
in this case.

Navigation

You can navigate around a virtual scene using the menu bar, toolbar,
navigation panel, mouse, and keyboard. The vrbounce demo shows the
viewer’s functionality.

Navigation view — You can change the camera position. From the menu
bar, select the Navigation menu Straighten Up option. Alternatively, you
can click the Straighten Up control from the toolbar or press F9 on the
keyboard. This option resets the camera so that it points straight ahead.

=Ioix|

File View Viewpoints | Mavigation Rendering Simulation Recording Help

— BEIEIDE

Speed

Undo Move Backspak

v Camera Bound ko Viewpoint F10

-

Ball T=0.00 Exxamine |Pos:[0.00 5,00 40.00] Dir:[0.00 0,00 -1.00]

6-10

Virtual Reality Toolbox Viewer

Navigation methods — Navigation with the mouse depends on the
navigation method you select and the navigation zone you are in when you
first click and hold down the mouse button. You can set the navigation
method using one of the following:

From the menu bar, select the Navigation menu Method option. This
option provides three choices, Walk, Examine, or F1ly. See the table Virtual
Reality Toolbox Viewer Mouse Navigation on page 6-12.

From the toolbar, select the drop-down menu that displays the navigation
options Walk, Examine, and Fly.

Lig

File Wiew Wiewpoints Mawigation Rendering Simulation Recording Help

IBaII jJP‘|,L,IEHamine'IQ,|QTQ_|.||Ea|}]

Hovigation drop-down menu

From the navigation panel, click the W, E, or F buttons.
From the keyboard, press Shift+W, Shift+E, or Shift+F.

Navigation zones — You can view the navigation zones for a scene through
the menu bar or keyboard.

From the menu bar, select the View menu Navigation Zones option. The
virtual scene changes as the navigation zones are toggled on and appear in
the virtual scene. Alternatively, from the keyboard, press the F7 key.

The vrbounce demo with Method set to Fly has three navigation zones.

6-11

6 Viewing Virtual Worlds

=101

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

[Eal dm (s ~o|dd|e B r =

[Ban [r=0.00 [Fy |Pos:[0.00 5,00 40.00] Dir:[0.00 0,00 -1.00]

The following table summarizes the behavior associated with the movement
modes and navigation zones when you use your mouse to navigate through a
virtual world. Turn the navigation zones on and experiment by clicking and
dragging your mouse in the different zones of a virtual world.

Virtual Reality Toolbox Viewer Mouse Navigation

Movement
Mode Zone and Description
Walk Outer — Click and drag the mouse up, down, left, or

right to slide the camera in any of these directions in
a single plane.

Inner — Click and drag the mouse up and down to
move forward and backward. Drag the mouse left and
right to turn left or right.

6-12

Virtual Reality Toolbox Viewer

Virtual Reality Toolbox Viewer Mouse Navigation (Continued)

Movement

Mode Zone and Description

Examine Outer — Click and drag the mouse up and down to
move forward and backward. Drag the mouse left and
right to slide left or right.
Inner — Click and drag the mouse to rotate the
viewpoint around the origin of the scene.

Fly Outer — Click and drag the mouse to tilt the view

either left or right.

Inner — Click and drag the mouse to pan the camera
up, down, left, or right within the scene.

Center — Click and drag the mouse up and down to
move forward and backward. Move the mouse left or
right to turn in either of these directions.

If your virtual world contains sensors, these sensors take precedence over
mouse navigation at the sensor’s location. See “Example of How Sensors
Affect Mouse Navigation” on page 6-14 for a description of how sensors affect

this navigation.

Changing the Navigation Speed

You can change the speed at which you navigate around the view.

1 In the menu bar, select the Navigation menu.

2 Select the Speed option.

3 Select Very Slow.

4 Navigate the virtual world.

Your navigation speed within the virtual world is much slower than before.

6-13

6 Viewing Virtual Worlds

Note Your navigation speed controls the distance you move with each
keystroke. It does not affect rendering speed.

Consider setting a higher speed for large scenes and a slower speed for more
controlled navigation in smaller scenes.

Example of How Sensors Affect Mouse Navigation
1 In the MATLAB Command Window, type

vrpend

at the MATLAB command prompt. The Inverted Pendulum demo starts,
and the viewer displays the following scene.

m Inverted Pendulum =1olx|

File Wiew VYiewpoints Mavigation Rendering Simulation Recording Help

IPseudoorthographicj P | ,b,lExaminej L) | q q | L] | | 5] | b =

|Pseudo orthographic view [r=0.00 [Examine |Pos:[-150.00 100,00 150,00] Dirn[0.66 -0.36 -

2 In the Simulink model window, from the Simulation menu, choose Start.

6-14

Virtual Reality Toolbox Viewer

The demo starts running.

3 Click inside and outside the sensor area of the viewer window. Note that
the sensor takes precedence over navigation with the left mouse button.
The shape of your pointer changes when it is located over the sensor area.

If the sensor covers the entire navigable area, mouse navigation is effectively
disabled. In this case, use the control panel or the keyboard to move about
the scene. For a three-button mouse or a mouse with a clickable wheel, you
can always use the middle button or the wheel to move about the scene. The
middle mouse button and wheel do not trigger sensors within the virtual
world.

Keyboard — You can also use the keyboard to navigate through a virtual
world. It can be faster and easier to issue a keyboard command, especially if
you want to move the camera repeatedly in a single direction. The following
table summarizes the keyboard commands and their associated navigation
functions. Note that the letters presented do not need to be capitalized in
order to perform their intended function.

Virtual Reality Toolbox Viewer Keyboard Navigation

Keyboard

Command Navigation Function

Backspace Undo move.

Ctrl+R Start/stop recording.

Ctrl+] Capture frame.

Ctrl+T Start/stop simulation.

F9 Straighten up and make the camera stand on the
horizontal plane of its local coordinates.

+/- Zoom in/out.

Fé6 Toggle the headlight on/off.

F7 Toggle the navigation zones on/off.

F5 Toggle the wireframe option on/off.

F8 Toggle the antialiasing option on/off.

6-15

6 Viewing Virtual Worlds

Virtual Reality Toolbox Viewer Keyboard Navigation (Continued)

Keyboard

Command Navigation Function

Esc Go to default viewpoint.
Home Return to current viewpoint.

Page Up, Page | Move between preset viewpoints.

Down

F10 Camera is bound/unbound from the viewpoint.
Shift+W Set the navigation method to Walk.
Shift+E Set the navigation method to Examine.
Shift+F Set the navigation method to Fly.

Shift Up/Down | Move the camera forward and backward.
Arrow

Up/Down Pan the camera up and down.

Arrow

Left/Right Pan the camera right and left.

Arrow,

Shift+Left/Right

Arrow

Alt+Up/Down Slide up and down.

Arrow

Alt+Left/Right | Slide left and right.

Arrow

6-16

Virtual Reality Toolbox Viewer

Virtual Reality Toolbox Viewer Keyboard Navigation (Continued)

Keyboard

Command Navigation Function

Ctrl+Left/Right/ | Pressing Ctrl alone acquires the examine lock at the
Up/Down point of intersection between the line perpendicular to
Arrow the screen, coming through the center of the viewer

window, and the closest visible surface to the camera.
Pressing the arrow keys without releasing Ctrl rotates
the viewpoint about the acquired center point.

Shift+Alt+Left/ | Tilt the camera right and left.
Right Arrow

Frame Capture and Animation Recording File Tokens

You can control frame captures of a virtual scene, or record animations
into files, using the Virtual Reality Toolbox viewer Capture and Recording
Parameters dialog of the Recording menu. The Virtual Reality Toolbox
supports a variety of file naming formats using file tokens. This topic
describes the Virtual Reality Toolbox file tokens.

By default, the Virtual Reality Toolbox viewer captures virtual scene frames
or records simulations in a file named with the following format:

%f_anim_%n.<extension>

This format creates a unique filename each time you capture a frame or
record the animation. %f and %n are tokens, where %f is replaced with the
name of the virtual world associated with the model and %n is a number that
is incremented each time you record a simulation for the same virtual world.
If you do not change the default filename, for example, if the name of the
virtual world file is vrplanets and you record a simulation for the first time,
the animation file is

vrplanets_anim_1.wrl

If you record the simulation a second time, the animation filename is
vrplanets_anim_2.wrl. In the case of frame captures, capturing another
frame of the scene increments the number.

6-17

6 Viewing Virtual Worlds

6-18

You can use a number of tokens to customize the automated generation of
frame capture or animation files. This section describes how to use these
tokens to create varying frame capture or animation filenames. You can

® Create files whose root names are the same as those of the virtual world.
This might be useful if you use different virtual worlds for one model.

o (Create files in directories relative to the virtual world location. (This is
most helpful if you want to ensure that the virtual world file and frame
capture or animation file are in the same directory.)

® (Create rolling numbered filenames such that subsequent frame captures
or runs of the model simulation create incrementally numbered filenames.
This is useful if you expect to create files of different parts of the model
simulation. This feature allows you to capture a frame or run a Simulink
model multiple times, but create a unique file each time.

® Create multiple filenames with time or date stamps, with a unique file
created each time.

The following tokens are the same for frame capture (.tif or .png) or
animation (.wrl and .avi) files.

Token | Description

%d The full path to the world VRML file replaces this token in

the filename string and creates files in directories relative

to the virtual world file location. For example, the format
%d/animdir/%f_anim_%n.avi saves the animation in the animdir
subdirectory of the directory containing the virtual world VRML
file. This token is most helpful if you want to ensure that the
virtual world file and animation file are in the same directory.
Note that in this case you must create the animdir subdirectory
first.

o°
o

The current day in the month replaces this token in the filename
string. For example, the format %f_anim_%D.wrl saves the
animation to vrplanets_anim_29.wrl for the 29th day of the
month.

Virtual Reality Toolbox Viewer

Token

Description

o°
b

The virtual world filename replaces this token in the filename
string. For example, the format %f_anim_%D.wrl saves the
animation to vrplanets_anim_29.wrl.

o°
=)

The current hour replaces this token in the filename string. For
example, the format %f_anim_S%h.wrl saves the animation to
vrplanets_anim_14.wrl for any time between 14:00 and 15:00.

o°
3

The current minute replaces this token in the filename string.
For example, the format %f_anim_%h%m.wrl saves the animation
to vrplanets_anim_1434.wrl for a start record time of 14:34.

o°
=

The current month replaces this token in the filename string.
For example, the format %f_anim_%M.wrl saves the animation to
vrplanets_anim_4.wrl for a start record time in April.

o°
w

The current second replaces this token in the filename string. For
example, the format %f_anim_%h%m%s.wrl saves the animation to
vrplanets_anim_150430.wr1l for a start record time of 15:04:30.

o°
=}

The current incremental number replaces this token in the
filename string. Each subsequent frame capture or run of the
simulation increments the number. For example, the format
%f_anim_%n.wrl saves the animation to vrplanets_anim_1.wrl
on the first run, vrplanets_anim_2.wrl on the second run, and
so forth.

o°
=<

The current four-digit year replaces this token in the filename
string. For example, the format %f_anim_%Y.wrl saves the
animation to vrplanets_anim_2005.wr1l for the year 2005.

Once you understand frame capture and recording file tokens, you can
continue to the following topics:

® “Creating Frame Captures” on page 6-20 — Describes how to create frame
captures of a virtual scene

¢ “Configuring Animation Recording Parameters” on page 6-22 — Describes
how to configure animation recording parameters

6-19

6 Viewing Virtual Worlds

Creating Frame Captures

Virtual Reality Toolbox allows you to save a frame snapshot (capture) of the
current Virtual Reality Toolbox viewer scene. You can save this frame as
either a TIF or PNG format file. You can later view this scene offline (in
other words, without the Virtual Reality Toolbox viewer). You can treat this
file like any other TIF or PNG file, such as print it, include it in other files,
and so forth.

This topic describes how to configure and capture a frame, using the
vrplanets demo as the example. It assumes that you have read the topic
“Frame Capture and Animation Recording File Tokens” on page 6-17 about
file names.

® “Configuring Frame Capture Parameters” on page 6-20 — Describes how to
configure frame capture file formats

® “Capturing a Frame” on page 6-21 — Describes how to capture frames

Configuring Frame Capture Parameters

1 In the MATLAB Command Window, type

vrplanets

at the MATLAB command prompt. The Planets demo starts.

2 From the Recording menu, choose Capture and Recording
Parameters.

The Capture and Recording Parameters dialog box is displayed.

3 Find the Frame Capture section of the dialog. This is located at the top
of the dialog.

The filename %f_anim_%n.wrl appears in the first text field, File.
4 Leave this filename as is.
5 In the File Format list, tif or png specify the graphic file format for the

captured frame. The default is tif. For this procedure, leave this format
setting at tif.

6-20

Virtual Reality Toolbox Viewer

Capture and Recording Parameters ll

"Frame Capture

File: IZf_anim_Zn.tif File Format: Itif YI Browse... |

6 You can disable the navigation panel. The navigation panel appears at the
bottom of the virtual scene view. You might want to turn off this panel for a
cleaner view of the virtual scene. Choose View > Navigation Panel > Off.

You can reenable the Navigation Panel (for example, choose View >
Navigation Panel > Halfbar) after you finish recording the .avi file.

7 Click OK.

You can now capture frames of a virtual scene. With this configuration, each
subsequent capture of a scene in the same world increments the file name
number (%n) and saves it in a tif file.

Capturing a Frame

You can capture frames of the virtual world from the Virtual Reality Toolbox
viewer through the menu bar, toolbar, or keyboard. This section assumes
that you have specified frame capture file formats. See “Configuring Frame
Capture Parameters” on page 6-20 if you have not defined frame capture files.

These actions save the captures in files in the current directory.

¢ From the menu bar, choose Recording > Capture Frame to capture
a frame.

® From the toolbar, click the Capture a frame screenshot button to
capture a frame.

* From the keyboard, press Ctrl+I to capture a frame.

You can view the frame capture files using any tool that reads tif or png files,
including the MATLAB imread function. For example,

image(imread('vrplanets_anim_1.tif'))

6-21

6 Viewing Virtual Worlds

6-22

Configuring Animation Recording Parameters

Virtual Reality Toolbox allows you to record animations of virtual scenes
controlled from Simulink or MATLAB. You can later play these animations
offline (in other words, without the Virtual Reality Toolbox viewer). You
might want to generate animation files for presentations, or to distribute or
archive simulation results.

You can save the virtual world offline animation data in the following formats:

¢ 3-D VRML file — Virtual Reality Toolbox traces object movements and
saves that data into a VRML file using VRML97 standard interpolators.
These files allow you to observe animated virtual scenes in a virtual reality
environment. 3-D VRML files typically use much less disk space than .avi
files. Virtual Reality Toolbox does not save any navigation movements you
make while recording the animation.

e 2-D Audio Video Interleave (AVI) file — Virtual Reality Toolbox writes
animation data in an .avi file. Virtual Reality Toolbox uses vrfigure
objects to record 2-D animation files. The recorded animation reflects
exactly what you see in the Virtual Reality Toolbox viewer window,
including navigation movements, during the recording.

If you distribute the VRML animation files, also be sure to distribute all the
inlined object and texture files referenced in the original VRML world file.

See the following topics:

¢ “Recording Files in the VRML Format” on page 6-22 — Describes how to
configure the record simulation parameters to create 3-D format animation
files.

¢ “Recording Files in the Audio Video Interleave (AVI) Format” on page 6-24
— Describes how to configure the record simulation parameters to create
2-D format animation files.

¢ “Scheduling Files for Recording” on page 6-26 — Describes how to schedule
record simulation operations to occur automatically.

Recording Files in the VRML Format

The following procedure describes how to set up recording parameters to
create a 3-D VRML format file from a Simulink model execution. This

Virtual Reality Toolbox Viewer

procedure uses the vrplanets demo. It describes how to create an animation
filename with the default name format. See “Frame Capture and Animation
Recording File Tokens” on page 6-17 to save files to other filenames.

1 Type the demo’s name in the MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

2 From the Recording menu, choose Capture and Recording
Parameters.

The Capture and Recording Parameters dialog box is displayed.

3 Find the Recording section of the dialog. This is located under the Frame
Capture dialog.

4 Select the Record to VRML file check box.

The File text field becomes active and the default filename,
%f_anim_%n.wrl, appears in the text field.

[v Fecard to AL File: |%f_anim_%nwrl

6-23

6 Viewing Virtual Worlds

5 Click OK.

After you define an animation file, you can manually record simulations.
See “Interactively Starting and Stopping Animation Recording” on page
6-29. If you want to record simulations on a schedule, see “Scheduling Files
for Recording” on page 6-26.

Recording Files in the Audio Video Interleave (AVI)
Format

The following procedure describes how to set up recording parameters to
create a 2-D AVI format file from a Simulink model execution. This procedure
uses the vrplanets demo. It describes how to create an animation filename
with the default name format. See “Frame Capture and Animation Recording
File Tokens” on page 6-17 to save files to other filenames.

1 Type the demo’s name in the MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

2 From the Recording menu, choose Capture and Recording
Parameters.

The Capture and Recording Parameters dialog box is displayed.

3 Find the Recording section of the dialog box. This is located under the
Frame Capture dialog box.

4 Select the Record to AVI file check box.

The File text field and Compression selection area become active, and the
default filename, %f_anim_%n.avi, appears in the text field.

6-24

Virtual Reality Toolbox Viewer

[v Fiecard to AW File: |%f_anim_%n.avi

5 Set the FPS to an appropriate value.

6 From the Compression list, select a compression method for the .avi
file. Because .avi files can become large, you might want to compress
the .avi file.

FPS: |15 Compression: | Autozelect 'I Guality: I-_"'5 j
[Mane |

MNone

Record mode: IManuaI 'I Losszless St ke ID
User Defined
0k I Cancel | Help |

Choose from

® Autoselect — Allows Virtual Reality Toolbox to select the most
appropriate compression codec. This option allows you to specify a
quality setting that is a number between 0 and 100. Higher quality
numbers result in higher video quality and larger file sizes. Lower
quality numbers result in lower video quality and smaller file sizes.

® |ossless — Forces Virtual Reality Toolbox to compress the animation
file without loss of data. (Typically, the compression of files sacrifices
some data.)

6-25

6 Viewing Virtual Worlds

6-26

e User Defined — Enables you to specify a particular compression codec.
This option allows you to specify a quality setting that is a number
between 0 and 100. Higher quality numbers result in higher video
quality and larger file sizes. Lower quality numbers result in lower video
quality and smaller file sizes. You need to specify an identification string
of a codec that your system supports.

® None — Prevents any compression for the animation file.
7 Disable the navigation panel. The navigation panel appears at the bottom

of the virtual scene view. You might want to turn off this panel for a cleaner
view of the virtual scene. Choose View > Navigation Panel > Off.

You can reenable the Navigation Panel (for example, choose View >
Navigation Panel > Halfbar) after you are finished recording the .avi
file.

8 Click OK.

Note The FPS parameter controls only the playback speed of the recorded
AVT file and has nothing to do with the timing of the simulation. The sample
time of the VR Sink block controls how often the simulation is recorded to a
file.

For example, to record a Simulink simulation with 25 frames per second (of
the simulation time), set Sample time in the VR Sink block to be 0.04. In
that situation, if you want to create an AVI file where 1 second of simulation
time corresponds to 1 second of AVI file playback time, set the FPS parameter
to 25.

After you define an animation file, you can record animations. See
“Interactively Starting and Stopping Animation Recording” on page 6-29.
If you want to record animations on a schedule, see “Scheduling Files for
Recording” on page 6-26.

Scheduling Files for Recording

This topic describes how to schedule the recording of an animation using the
MATLAB interface for a virtual world that is associated with a Simulink

Virtual Reality Toolbox Viewer

model. In this case, the timing in an animation file derives from the
simulation time. One second of the recorded animation time corresponds

to one second of Simulink time. To schedule the recording of an animation
file, you preset the simulation time interval during which the animation
recording occurs. This procedure uses the vrplanets demo. It assumes that
you have already configured the recording parameters for an animation file.
See “Recording Files in the VRML Format” on page 6-22 or “Recording Files
in the Audio Video Interleave (AVI) Format” on page 6-24 for further details.

1 If the vrplanets demo is not already open, type the demo’s name in the
MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

2 From the Recording menu, choose Capture and Recording
Parameters.

The Capture and Recording Parameters dialog box is displayed. In the
Recording section, this dialog box contains the Record mode list. Note
that the Record mode list is enabled only if you also select either or both
of the Record to VRML and Record to AVI check boxes.

v Record toWRML

v Record to Ayl

6-27

6 Viewing Virtual Worlds

3 From the Record mode list, choose Scheduled.

Record mode: |k anual 'I

Scheduled

The Start time and Stop time text fields are enabled.

4 Enter in Start time and Stop time the start and stop times during which
you want to record the animation. For example, enter 0 as the start time
and 100 as the stop time.

Ensure that the recording start time value is not earlier than the start
time of the Simulink model; the recording operation cannot start in this
instance. If the stop time exceeds the stop time of the Simulink model, or
if it is an out of bounds value such as a negative number, the recording
operation stops when the simulation stops.

5 Click OK.

After you define the schedule, you can record simulations. See “Starting and
Stopping Simulations” on page 6-9.

Note You can override the recording schedule by starting or stopping the
recording interactively.

6-28

Virtual Reality Toolbox Viewer

Interactively Starting and Stopping Animation
Recording

You can start or stop recording animations of the virtual world from the
Virtual Reality Toolbox viewer through the menu bar, toolbar, or keyboard.
This section assumes that you have specified animation files into which
the animation is to be recorded. See “Configuring Animation Recording
Parameters” on page 6-22 if you have not defined animation files.

¢ From the menu bar, choose the Simulation menu, Start option to start
recording the animation (select Stop to stop the recording).

¢ From the toolbar, click the Start/stop recording button to start or stop
recording the animation (select Stop to stop the recording). Alternatively,
you can use the Recording menu Start Recording and Stop Recording
options. From the keyboard, press Ctrl+R to toggle between starting or
stopping the animation recording.

¢ Stop the simulation or let the model simulate until the defined simulation
stop time.

Note If you stop the simulation while recording is enabled, the viewer
also stops recording the animation.

Viewing the Animation File

This topic assumes that you have a VRML or AVI animation file that you
want to view. If you do not have an animation file, see “Recording Files in the
VRML Format” on page 6-22 or “Recording Files in the Audio Video Interleave
(AVI) Format” on page 6-24 for descriptions on how to create one.

To View VRML Files

1 Change directory to the one that contains the VRML animation file.

2 You can view the file in one of the following ways:

® Double-click on the VRML file. A VRML-enabled Web browser opens
with the animation running. To view the resulting animation file, you
must have a VRML-enabled Web browser installed on your system. Also,

6-29

6 Viewing Virtual Worlds

ensure that the .wrl extension is associated with the blaxxun Contact
Web browser.

e At the MATLAB window, type

w=vrview('vrplanets_anim_1.wrl');
set(w, 'TimeSource', 'freerun');

The vrview command displays the default Virtual Reality Toolbox viewer
for the animation file. Setting the TimeSource property to 'freerun'
directs the viewer to advance its time independent of MATLAB.

3 To stop the animation, type

set(w, 'TimeSource', 'external');

Alternatively, to close the viewer and delete the world, you can get the
handle of the vrfigure object and close it, as follows:

f=get(w, 'Figures')

close(f);
delete(w);

Or, to close all vrfigure objects and delete the world, type

vrclose
delete(w);

To View AVI Files
1 Change directory to the one that contains the AVI animation file.
2 Double-click that file.
The program associated with .avi files in your system (for example,

Windows Media Player) opens for the .avi file. If your .avi file is not yet
running, start it now from the application. The animation file runs.

6-30

Virtual Reality Toolbox Viewer

Working with Viewpoints

You or visitors to a virtual world navigate through the virtual world
environment using the Virtual Reality Toolbox viewer navigation methods
Walk, Examine, and Fly. In addition to these navigation methods, a virtual
world creator can set up points of interest, known as viewpoints, in the virtual
world. You can use viewpoints to guide visitors through the virtual world
and to emphasize important points.

When a visitor first enters a virtual world, he or she is defaulted to the default
viewpoint. This is the first Viewpoint node in the virtual world file. Define
the virtual world default viewpoint carefully; it should be the most interesting
entry point to the virtual world.

Each virtual world has as many viewpoints as you define for it. You can
define viewpoints in the virtual world through your chosen editor or through
the Virtual Reality Toolbox viewer.

You can define a viewpoint to be either static or dynamic.

e Static -- Created typically at the top level of the virtual world object
hierarchy. You can also create these viewpoints as children of static objects
(Transforms).

¢ Dynamic -- Created as children of moving objects (objects controlled from
MATLAB or Simulink) or linked to moving objects with the VRML ROUTE
mechanism. Dynamic viewpoints allow you to create interesting views such
as from the driver’s seat at a racing course.

This topic illustrates viewpoints using the vrplanets demo.

1 Select a Virtual Reality Toolbox demo and type that demo’s name in the
MATLAB command window. For example:

vrplanets
The Simulink model is displayed. By default, the Virtual Reality Toolbox

viewer for that model is loaded and becomes active. If the viewer is not
displayed, double-click the VR Sink block in the Simulink model.

2 From the menu bar, select the Viewpoints menu.

6-31

6 Viewing Virtual Worlds

6-32

A menu of the viewpoint options is displayed. Included is a list of the
existing viewpoints.

Viewpoints MNawigation Rendering Sin

Prewious Wiewpaink Palp
Mext Yiewpoink Paln
Return bo Yiewpoink Hore:

G0 to Default Yiewpoink Esc

Create Yiswpaint. ..
Remaove Current Yiewpoint

Perspective view |

3 Select the drop-down list on the leftmost side of the toolbar to see the list of
existing viewpoints from the toolbar.

List of viewpnints

Virtual Reality Toolbox Viewer

List of viewpoints

=|of x|

File Wiew Wiewpoints Mawigghion Rendering Simdlation Recording Help

sl Flodale Bl r o=

IView fram top

F'lspetiv =] k
Wi on E arth

Wigw From topk |T=E|.EIE| Fly |P05:[E|.IZIIZ| 150,00 0.00] Dir:[0.00-1.000.00] 2

\ Current viewpoint

When you add new viewpoints to the world, these lists are updated to reflect
the new viewpoints.

The current viewpoint is also displayed in the left pane of the status bar.

You manage and navigate through viewpoints from the menu bar, toolbar,
navigation panel, and keyboard. In particular, you can

* Navigate to a previous or next viewpoint

¢ Return to the initial position of the current viewpoint

6-33

6 Viewing Virtual Worlds

6-34

® Go to the virtual world’s default viewpoint
® Create and remove viewpoints

* Navigate to an existing viewpoint

Navigating through Viewpoints

You can navigate through a virtual scene’s viewpoints using the menu bar,
toolbar, navigation panel, or keyboard shortcut keys. These navigation
methods are inactive if the author has specified no or only one viewpoint
in the virtual world.

¢ From the menu bar, use the Viewpoints menu to move between viewpoints.
Use the Previous Viewpoint and Next Viewpoint options to sequentially
move up and down the list of existing viewpoints. To move focus to a
particular viewpoint, choose a viewpoint from the list of viewpoints.

¢ From the toolbar, use the drop-down list of viewpoints to select a particular
viewpoint.

¢ From the navigation panel, use the Previous Viewpoint and Next
Viewpoint controls to sequentially move up and down the list of existing
viewpoints.

¢ From the keyboard, press Page Up and Page Down.

To reset a camera to the initial position of the current viewpoint, use one of
the methods listed in “Resetting Viewpoints” on page 6-34. Resetting the
viewpoint is useful when you have been moving about the scene and need to
reorient yourself.

Resetting Viewpoints

You can reset your position in a scene to initial default or current viewpoint
position through the menu bar, toolbar, navigation panel, or keyboard shortcut
keys.

® From the menu bar, use the Viewpoints menu Return to viewpoint
option to return to the initial position of the current viewpoint.
Alternatively, from the toolbar, select Return to viewpoint button to
return to the initial position of the current viewpoint.

Virtual Reality Toolbox Viewer

® From the navigation panel, click the Go to default viewpoint control to
return to the default viewpoint of the virtual world. Alternatively, from the
menu bar, use the Viewpoints menu Go to Default Viewpoint option to
return to the default viewpoint of the virtual world.

* From the keyboard,
= Press the Esc key to return to the default viewpoint of the virtual world.

= Press the Home key to return to the initial position of the current
viewpoint.

Creating Viewpoints
You can add new viewpoints to the virtual world through the menu bar or
toolbar.

1 Select a Virtual Reality Toolbox demo and type that demo’s name in the
MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

In the Virtual Reality Toolbox viewer, the default viewpoint for this model
is View from top.

2 From the menu bar, choose the Viewpoints menu.
3 Choose View on Earth.
4 In the viewer window, navigate to a random position in the scene.

5 From the Viewpoints menu, choose Create Viewpoint. Alternatively,
click Create viewpoint on the toolbar.

The Create Viewpoint dialog box is displayed.

6-35

6 Viewing Virtual Worlds

Create ¥iewpoint il

MHame: ||

Placement: IEhiId of the root j

v Jump ta new viewpoint immediately

ak | Cancel |

6 In the Name box, enter a unique and descriptive name for the viewpoint.

7 The state of the Placement field depends on the current viewpoint. If the
current viewpoint is at the top hierarchy level in the virtual world (one of
the children of the root), the Placement field is grayed out. In this case, it
is only meaningful to create the new viewpoint as a static one at the same
top hierarchy level.

In this example, the Placement field is editable. Select Child of the
root as the viewpoint type. This option makes the viewpoint a static one.

8 Select the Jump to new viewpoint immediately check box to make the
new viewpoint become the current viewpoint for the viewer. If you do not
select this check box, you still create a new viewpoint, but you remain
bound to the current viewpoint, not to the new viewpoint.

9 Click OK.

10 From the File menu, click Save As to save the file with the new viewpoint.
If you do not save the file, the new viewpoint will be lost during simulation.

11 From the Simulation menu, click Start. Observe the motion of the planets
from the new, static viewpoint.

12 Stop the simulation.
13 Repeat steps 2 to 6.

14 In the Placement field, select Sibling of the current viewpoint. This
option creates a new viewpoint at the same level in the virtual world object
hierarchy as the child of the parent transform of the current viewpoint.
The local coordinate system of the parent transform defines the new

6-36

Virtual Reality Toolbox Viewer

15

16

17

viewpoint coordinates. As a result, the new viewpoint moves with the
parent transform. The new viewpoint also keeps the position relative to the
transform (offset) you first defined by navigating somewhere in the space
from the current viewpoint (step 4).

Note If the current viewpoint is at the top hierarchy level in the virtual

world (one of the children of the root), the Placement field is grayed out.
In this case, it is only meaningful to create the new viewpoint as a static

one at the same top hierarchy level.

Select the Jump to new viewpoint immediately check box to make the
new viewpoint become the current viewpoint for the viewer. If you do not
select this check box, you still create a new viewpoint, but you remain
bound to the current viewpoint, not to the new viewpoint.

Click OK.

From the File menu, choose Save As to save the file with the new
viewpoint. If you do not save the file, the new viewpoint will be lost during
simulation.

From the Simulation menu, choose Start. Observe that the relative
position between the new viewpoint and Earth remains the same. The new
viewpoint moves together with its parent object Earth transform.

6-37

6 Viewing Virtual Worlds

6-38

Mraneis =

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

| Jdm sl saldd|le B @ »r =

|N0 wiewpaint T=1.03 Fly |Pos:[—2.DD 1.90°35.00] Dir:[0.00 -0.10-1.00] .«

Rendering

You can change the rendering of the scene through the controls on the
navigation panel or options on the rendering menu. The vrpend and
vrplanets demos are used to demonstrate the viewer’s functionality.

You can turn the antialiasing of the scene on or off. Antialiasing applies to the
textures of a world. Antialiasing is a technique that attempts to smooth the
appearance of jagged lines. These jagged lines are the result of a printer or
monitor’s not having enough resolution to represent a line smoothly. When
Antialiasing is on, the jagged lines are surrounded by shades of gray or color.
Therefore, the lines appear smoother rather than jagged.

The following figure depicts the vrplanets demo View on Earth viewpoint
with Antialiasing on. To better display the effects of antialiasing, turn
Headlight on. You can turn antialiasing on or off to observe the differences.

Virtual Reality Toolbox Viewer

Meiners _lajx]

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IViewonEarth 'IJP‘|£|F|}' 'l9|dd|.||ﬁ| P o=

[view on Earth [r=0.00 [Fiy |Pos:[-2.00 1,90 35.00] Dir:[0.00 -0.10-1.00]

You can turn the camera headlight and the lighting of the scene on or off.
When Headlight is off, the camera does not emit light. Consequently, the

scene can appear dark. For example, the following figure depicts the vrpend
demo with Headlight on.

6-39

6 Viewing Virtual Worlds

6-40

m Inverted Pendulum ;Iglil

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IPseudo arthographic: VIJ ol | ,&,IExamine 'l ol | a a | - Fal | P =

|Pseudc- orthographic view T=0.00 Examing |Pos:[—180.DD 100,00 180.00] Cir:[0.66 -0.26 -0 ¢

Hendlight toggle

The scene looks darker when Headlight is set to off.

Virtual Reality Toolbox Viewer

=T

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IPseudoorthographic 'ld [~ | @IEHamine 'l 2 | Cf o} | L | | ﬁ | b =

Pseudo orthographic wisw T=0.00 E:amine |Pos:[—180.DD 100.00 130.00] Cir:[0.66 -0.36 -0 2

Note It is helpful to define enough lighting within the virtual scene so that it
is lit regardless of the Headlight setting.

When Lighting is off, the virtual world appears as if lit in all directions. The
Virtual Reality Toolbox viewer does not compute and render all the lighting
effects at the surfaces of the objects. Shadows disappear and the scene loses
some of its 3-D quality. The following is the vrpend demo with Lighting off.

6-41

6 Viewing Virtual Worlds

m Inverted Pendulum ;Iglil

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IPseudo arthagraphic VIJ ol | @IEHamine 'l o) | a o |]

[Pseuda orthographic view [r=0.00 [Examine |Pos:[-180.00 100,00 180.00] Dir:[0.66 -0.36 L

If Transparency is off, transparent objects are rendered as solid objects.

6-42

Virtual Reality Toolbox Viewer

m Inverted Pendulum ;Iglil

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IPseudo arthagraphic 'ld ol | @IEHamine 'l o) | a o |]

[Pseuda orthographic view [r=0.00 [Examine |Pos:[-180.00 100,00 180.00] Dir:[0.66 -0.36 L

Turning Wireframe on changes the scene’s objects from solid to wireframe
rendering. The following is the vrpend demo with Wireframe on.

6-43

6 Viewing Virtual Worlds

=

File Wiew Viewpoints MNavigakion Rendering Simulation Recording Help

IPseudoorthographic 'qu ot | Y 9| ad q | - | | iﬁ| L

Pseudao orthographic wisw T=0.00 E:zaming |P05:[—1E!D 00 100,00 180.00] Dir:[0.66 -0.36 L 2

Wirefrome toggle

If Textures is on, objects have texture in the virtual scene. The following is
the vrplanets demo with Textures on.

6-44

Virtual Reality Toolbox Viewer

Mranes R =

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IViewfromtop 'ld ol | @IFI}I 'l9| a O:|]

[view From top [r=0.00 [Fiy |Pos:[0.00 150,00 0.00] Dir:[0.00 -1.00 0.00]

If Textures is off, objects do not have texture in the virtual scene. The
following is the vrplanets demo with Textures off.

6-45

6 Viewing Virtual Worlds

Mpiners _lajx]

File Wiew Viewpoints MNavigation Rendering Simulation Recording Help

IViewfromtop 'ld ol | @IFI}I 'l9| a O:| *

[view From top [r=0.00 [Fiy |Pos:[0.00 150,00 0.00] Dir:[-0.06 -1.00 -0.06]

You can specify the maximum size of a texture used in rendering the vrfigure
object. This option gives you a list of texture sizes to choose from. See the
vrfigure MaxTextureSize property for further details.

6-46

blaxxun Contact VRML Plug-In

blaxxun Contact VRML Plug-In

The Virtual Reality Toolbox includes the blaxxun Contact VRML plug-in.
This is a VRML plug-in for either Microsoft Internet Explorer or Netscape
Navigator on a Windows platform. This section provides a quick overview of
the functions and controls of the blaxxun Contact VRML plug-in, and also
describes full screen stereo support in blaxxun.

When you open a VRML file with a Web browser, the blaxxun Contact VRML
plug-in is used to display a virtual scene. A control panel is located at the
bottom of the scene.

Viewpoint control Show menu

Move ment mod e
and diol control
Show/Hide ponel Left/Right buttons

Viewpoint Control

Three buttons on the control panel control the viewpoint. The square button
in the middle resets the current viewpoint to its initial position. This is the
most useful viewpoint control button until you gain enough experience with
the viewer to explore worlds using navigation. The keyboard shortcut for the
square button is the Esc key.

You use the other two triangular buttons to browse forward and backward
through author-defined viewpoints of the virtual world. If the author does not
define other viewpoints, these buttons are inactive. The keyboard shortcuts
for the triangular buttons are the Page Up and Page Down keys.

Control Menu

You use the control menu to review or select viewer settings and navigation
methods. To access the control menu, use the following procedure:

6-47

6 Viewing Virtual Worlds

6-48

1 On the Control Panel, click the question mark, or place your mouse pointer
anywhere in the browser window, and then right-click.

If you selected Direct3D with the blaxxun Contact installation, a menu
similar to the following appears:

Viewpoinks
araphics
Mavement
Speed

View my Avatar

T vy v v

Settings k
Help
v Panel

v High Spesd
High CQuality
Hardware
MM Speed

2 From the menu, you can make changes to the navigational mode, graphic
quality, and graphic speed.

Depending on the complexity of the virtual world and the required speed and
rendering quality, you can choose the settings that best meet your needs.

Because the viewer’s graphical performance strongly depends on several
factors, you might want to experiment to find a reasonable compromise
between the quality and speed for your system.

Navigation

The dial control and left/right buttons give you direct access to the movement
mode for walking through a virtual world. However, the movement behavior
of your mouse pointer changes depending on the movement mode you select.
When you select a different movement mode, clicking your left mouse button
causes your viewpoint to move differently. Practice changing the movement
mode and navigating through a virtual world until you get satisfactory results.

blaxxun Contact VRML Plug-In

To select a movement mode, use the following procedure:

1 Place your mouse pointer over a virtual world, then right-click. A menu
appears.

2 On the menu, point to Movement. A submenu appears.

3 Choose Walk, Slide, Rotate, Examine, Fly, Pan, or Jump.

A letter in the center of the dial indicates the current movement mode. For
example, in the preceding illustration, the large E stands for Examine mode.

Initially, you should use Examine mode, which is for examining objects from
various angles. You will find that the functions of the left/right button controls
in Examine mode are the easiest for beginners to master.

Movement Modes

The following table lists the movement modes.

Movement
Mode Description

Walk Drag the mouse toward the top or the bottom of the
screen to move forward or backward, and drag toward
the left or right to turn left or right.

Slide Drag the mouse to move up, down, left, or right within
a plane that is perpendicular to your view.

Rotate Press the left mouse button to select a rotation point
within the scene. Then drag the mouse toward the top
or bottom to move forward or back, or drag the mouse
left or right to rotate around the fixed point.

Examine Press the left mouse button to select a rotation point
within the scene. Then drag the mouse up, down, left,
or right to rotate the object.

Fly Press the left mouse button to start flying. Drag the
mouse toward the top or bottom to rise or sink, and
drag left or right.

6-49

6 Viewing Virtual Worlds

6-50

Movement

Mode Description

Pan Drag the mouse toward the top or bottom of the scene
to loop up and down, and drag left or right to turn left
or right.

Jump Place your mouse pointer over an object, then left-click.
Your view moves to that point.

blaxxun Contact Settings

For PCs, the Virtual Reality Toolbox includes the blaxxun Contact VRML
plug-in for Web browsers. The viewer allows you to select several working
configurations, and its performance depends on several factors:

¢ The speed of your hardware

System display driver settings
Method of 3-D rendering

blaxxun Contact parameters

The size of the window in which you display the 3-D visualization

You might want to test the various combinations possible on your system to
find an optimal configuration for the best performance in 3-D visualization.

With respect to the 3-D rendering method, you can install blaxxun
Contact with two basic configurations using OpenGL and Direct3D drivers.
You can tune the viewer performance by setting the parameters in the
Settings-Preferences dialog box of the viewer floating menu, accessible by
right-clicking when you are viewing a virtual scene.

In Direct3D configuration, you can select the speed and quality on the fly
from the top level of the menu. You can, depending on the system capabilities,
select one of the options on the menu. For example, you can select High Speed,
High Quality, Hardware Acceleration, and MMX Speed.

blaxxun Contact VRML Plug-In

In the OpenGL configuration, you can set similar rendering properties. From
the floating menu, choose Settings, and then choose Preferences.

Stereoscopic Vision

blaxxun Contact supports stereoscopic vision. If the graphic card and system
driver enable full screen stereo mode, and if you have corresponding stereo
vision hardware (such as stereoscopic shutter glasses), you can access this
support. In full screen mode, no menus and other user interfaces are available
to the user.

e To switch blaxxun Contact to the full screen mode, press F5.

¢ To switch back to normal mode, press Esc.

If you have installed the appropriate stereo driver, blaxxun Contact supports

full screen stereo mode under Microsoft Windows with most NVIDIA graphic
cards. For details, refer to the card manufacturer documentation.

If you want to tune the full screen mode resolution or color depth.

1 In the blaxxun Contact window, place your mouse pointer over a virtual
world, then right-click.

A menu appears.
2 On the menu, point to Settings. A submenu appears.
3 Choose Preferences.
4 Tune the full screen mode resolution or color depth settings.

5 Click OK when done.

Note that your system configuration can switch to stereoscopic full screen
mode only when using one of the Direct3D or OpenGL rendering engines. If
you are unable to switch to full screen stereo mode, try to install blaxxun
Contact using another rendering engine. Typically, graphic card stereo drivers
provide testing applications to confirm the functionality of stereoscopic modes.

6-51

6 Viewing Virtual Worlds

6-52

Virtual Reality Toolbox
Stand-Alone Viewer

The Virtual Reality Toolbox stand-alone viewer, Orbisnap, allows you to
visualize virtual worlds or prerecorded animation files without running
MATLAB or the Virtual Reality Toolbox.

What Is Orbisnap? (p. 7-2)

Installing Orbisnap (p. 7-3)

Using Orbisnap (p. 7-5)

Orbisnap Interface (p. 7-10)
Orbisnap Command Line (p. 7-17)

Description of the Virtual Reality
Toolbox stand-alone viewer

Description of how to install
Orbisnap

Description of how to access and use
Orbisnap

Description of the Orbisnap interface

Description of the Orbisnap
command line

7 Virtudl Reality Toolbox Stand-Alone Viewer

What Is Orbisnap?

The Virtual Reality Toolbox includes Orbisnap. Orbisnap is a free, optional,
stand-alone VRML97 viewer that does not require you to have either
MATLAB or the Virtual Reality Toolbox running. You can use Orbisnap to

¢ View prerecorded WRL animation files. For example, you might want to
show prerecorded animation files in a meeting at which you do not have
access to MATLAB or the Virtual Reality Toolbox.

* Remotely view, from a client machine, a virtual world loaded in a current
session of the Virtual Reality Toolbox. For example, if you want to visualize
a virtual world active in a Virtual Reality Toolbox session that is running
on a computer in another part of the building, or across the network. This
functionality allows you to remotely view a simulation, but not control it.

® View and navigate, but not simulate, a VRML world. You can navigate,
render, and otherwise visualize a VRML world without simulating it.

Orbisnap is multiplatform. You can run Orbisnap on any of the platforms that
the Virtual Reality Toolbox supports. You do not need a MathWorks license
to run Orbisnap.

Installing Orbisnap

Installing Orbisnap

The collection of Orbisnap files includes the Orbisnap starter file,
Orbisnap executable file, and supporting files. These files are located
under the Virtual Reality Toolbox orbisnap directory (for example,
matlabroot\toolbox\vr\orbisnap\bin for the Windows platform). No
further installation is necessary, but you might want to copy the Orbisnap
files to another location or create shortcuts or symbolic links to the Orbisnap
starter file for convenience.

This topic describes the following:

* “System Requirements” on page 7-3
® “Copying Orbisnap to Another Location” on page 7-3
¢ “Adding Shortcuts or Symbolic Links” on page 7-4

System Requirements

Orbisnap has the same hardware and software requirements as MATLAB.

It is a multiplatform product that can run on PC-compatible computers with
Windows or Linux. It can also run on Solaris hardware running UNIX,
Apple Power Macintosh hardware running Mac OS X, and Hewlett-Packard
hardware running HP-UX. See the following page on the MathWorks Web site:

http://www.mathworks.com/products/matlab/requirements.html

Copying Orbisnap to Another Location

Orbisnap runs independently of MATLAB and the Virtual Reality Toolbox.
This means that you can copy Orbisnap to another location or even another
machine. The following is a general procedure on how to copy Orbisnap to
another location:

1 From a command line or GUI such as Windows Explorer, create a directory
into which you can copy Orbisnap.

2 Copy all the files in the Orbisnap directory and its subdirectories. These
files are likely located in the Virtual Reality Toolbox orbisnap directory, for
example, matlabroot\toolbox\vr\orbisnap for the Windows platform.

http://www.mathworks.com/products/matlab/requirements.html

7 Virtudl Reality Toolbox Stand-Alone Viewer

7-4

3 Paste the files into the directory you created in step 1.

Adding Shortcuts or Symbolic Links
For convenience, you can create a shortcut (Windows) or symbolic link (UNIX)
to the Orbisnap starter file.

® In Windows Explorer, right-click orbisnap.bat and select Properties.
You can start Orbisnap from either the shortcut or the original starter file.

¢ In UNIX, use the 1n -s command to create a symbolic link to orbisnap.

Using Orbisnap

Using Orbisnap

Orbisnap looks like the following:

i

File Wiew Wiewpoints Mavigation Rendering Help

| R - [o d g

Mo wigwpoink T=10865917 Fly Pos:[0.00 0,00 0,007 Dir:[0.00 0,00 -

Orbisnap provides much of the functionality of the Virtual Reality Toolbox
viewer. Using the menu bar, toolbar, and navigation panel, you can

¢ Customize the Orbisnap window
® Manage virtual world viewpoints

® Manage scene rendering
You cannot

¢ Open an editor for the virtual world
® Open another window for the virtual world

® Simulate the world (start/stop the model)

7 Virtudl Reality Toolbox Stand-Alone Viewer

® Record or manage animation files

Viewing Prerecorded WRL Animations or Virtual
Worlds

This topic assumes that you have a prerecorded WRL animation file
or an existing virtual world file. This procedure uses a file named
vr_bounce_anim.wrl.

1 Start Orbisnap. For example, in Windows double-click orbisnap.bat in
matlabroot\toolbox\vr\orbisnap\bin.

This is an Orbisnap starter file that calls the Orbisnap executable.
Orbisnap is displayed.

2 In Orbisnap, select File > Open.
A file browser is displayed.

3 Browse to the directory that contains the prerecorded WRL animation file
or virtual world you want to view.

4 Select the virtual world or prerecorded WRL file you want to view.

5 Click Open.

The file is displayed. If the file is an animation file, the simulation begins.
6 To close Orbisnap, select File > Close.

Using the menus, toolbar, and navigation panel, you can perform many of the
same operations on the virtual world that you can with the Virtual Reality
Toolbox viewer. See “Orbisnap Interface” on page 7-10 for an overview of
the Orbisnap interface. See “Orbisnap Command Line” on page 7-17 for a
description of the Orbisnap command-line options.

Viewing the Virtual Reality Toolbox Server Virtual
Worlds Remotely

To view virtual worlds from the Virtual Reality Toolbox server in Orbisnap,
you must have

Using Orbisnap

® MATLAB running a Virtual Reality Toolbox server session

¢ The version of the Virtual Reality Toolbox server to which you want to
connect must be compatible with the Orbisnap version you are running.
For example, you cannot connect Orbisnap to the Virtual Reality Toolbox
Version 3.1.

® Network access between the client computer (running Orbisnap) and host
computer (running MATLAB and Virtual Reality Toolbox server)

Note If you expect Orbisnap to access a virtual world on the Virtual
Reality Toolbox server from a remote computer, you must make that virtual
world available for Internet viewing. In the Virtual Reality Toolbox viewer
for the virtual world you want to make available, select Simulation >
Block Parameters, select the Allow viewing from the Internet check
box, then click OK.

Note the following when using Orbisnap remotely:

® Although you can visualize a virtual world from the Virtual Reality Toolbox
server in Orbisnap, any navigation or rendering in one viewer is not
reflected in the other. For example, any navigation you do on the virtual
world in Orbisnap is not reflected in the virtual world in the Virtual Reality
Toolbox viewer, and vice versa.

* You cannot start or stop a simulation of the virtual world in Orbisnap. You
can see a simulation on Orbisnap only if the virtual world is simulated in
the Virtual Reality Toolbox server.

¢ The simulation might slow when you connect Orbisnap remotely to the
Virtual Reality Toolbox server.

1 Start Orbisnap. For example, in Windows, double-click orbisnap.bat in
matlabroot\toolbox\vr\orbisnap\bin.

This is an Orbisnap starter file that calls the Orbisnap executable.
Orbisnap is displayed.

2 In Orbisnap, select File > Connect to Server.

7 Viriudl Reality Toolbox Stand-Alone Viewer

The Connect to Server dialog is displayed.

3 Enter the IP address or hostname of the host computer running the Virtual

Reality Toolbox server (127.0.0.1 by default). The HTTP port number is
8123 by default and the port number at which the Virtual Reality Toolbox
server is listening is 8124 by default.

Connect To Server il

Host hame:

eing HTTP port 8123 and WR port 8124

ak. | Cancel |

The Choose a world dialog is displayed. This dialog lists all the virtual
worlds that are currently active on the Virtual Reality Toolbox server.

Choose a world x|

Chooze & world to connect to

Planets

|

ak | Canicel |

If no virtual world has ever been opened in this session of the Virtual
Reality Toolbox server, Orbisnap displays a message. If you see this
message, contact your counterpart running the Virtual Reality Toolbox
server to better synchronize your activities. A virtual world must be fully
active on the Virtual Reality Toolbox server for Orbisnap to remotely access
it.

Using Orbisnap

Error connecting to host ll

Error connecting ko hosk "127.0.0.1" Mo response from remote host,
Possible reasons are:
- the remote host does not exist
- there's no YR server running on the remoke hosk
(o wvirtual worlds hawve been open et}
- the remate host is tempararily busy

4 Select a virtual world.

5 Click OK.

Orbisnap displays the selected virtual world of the remote Virtual Reality
Toolbox server.

6 Navigate and render the virtual world as you want.
7 To close Orbisnap, select File > Close.

Using the menus, toolbar, and navigation panel, you can perform many of the
same operations on the virtual world that you can with the Virtual Reality
Toolbox viewer. See “Orbisnap Interface” on page 7-10 for a description of
the Orbisnap interface. See “Orbisnap Command Line” on page 7-17 for a
description of the Orbisnap command-line options.

7-9

7 Virtudl Reality Toolbox Stand-Alone Viewer

Orbisnap Interface

This topic describes the following components of the Orbisnap interface:

e “Menu Bar” on page 7-10
® “Toolbar” on page 7-11

* “Navigation Panel” on page 7-12

Using the menus, toolbar, and navigation panel, you can perform many of the
same operations on the virtual world that you can with the Virtual Reality
Toolbox viewer. For further details on using this interface, see Chapter 6,
“Viewing Virtual Worlds”.

You can also download the PDF version of the Virtual Reality Toolbox User’s
Guide documentation from the MathWorks Web site:

http://www.mathworks.com/access/helpdesk/help/pdf_doc/vr/vr.pdf

Menu Bar
The Orbisnap menu bar has the following menus:

® File — General file operation options, including,

Open — Invokes a browser that you can use to browse to the virtual
world you want to visualize.

Connect to server -- Allows you to connect to a Virtual Reality Toolbox
server. Enter the IP address or hostname of the host computer running
the Virtual Reality Toolbox server (127.0.0.1 by default) and the port
number at which the Virtual Reality Toolbox server is listening (8124
by default).

= Reload — Reloads the saved virtual world. Note that if you have created
any viewpoints in this session, they are not retained unless you have
saved those viewpoints with the Save As option.

= Save As — Allows you to save the virtual world.

= Close — Closes the Orbisnap window.

® View — Enables you to customize Orbisnap, including,

7-10

http://www.mathworks.com/access/helpdesk/help/pdf_doc/vr/vr.pdf

Orbisnap Interface

= Toolbar — Toggles the toolbar display.

= Status Bar — Toggles the status bar display at the bottom of Orbisnap.
This display includes the current viewpoint, simulation time, navigation
method, and the camera position and direction.

= Navigation Zones — Toggles the navigation zones on/off (see
“Navigation” on page 7-12 for a description of how to use navigation
zones).

= Navigation Panel — Controls the display of the navigation panel,
including toggling it.

= Zoom In/Out — Zooms in or out of the world view.

= Normal (100%) — Returns the zoom to normal (initial viewpoint
setting).

Viewpoints — Manages the virtual world viewpoints.
Navigation — Manages scene navigation.
Rendering — Manages scene rendering.

Help — Displays the Help browser for Orbisnap.

Toolbar

The Orbisnap toolbar has buttons for some of the more commonly used
operations available from the menu bar. These buttons include:

Drop-down list that displays all the viewpoints in the virtual world

J

Return to viewpoint button
Create viewpoint button -

Straighten up button =Y
Drop-down list that displays the navigation options Walk, Examine, and Fly

Undo move button =

Zoom in/out buttons a s Q

7-11

7 Viriudl Reality Toolbox Stand-Alone Viewer

7-12

Navigation Panel

The Orbisnap navigation panel has navigation controls for some of the more
commonly used navigation operations available from the menu bar. These
controls include

Slide left/right

Orbisnop Help

IWL
/ \\ Heudlight topgle

Hovigotion method - Wireframe toggle

Hide ponel

Hext/previous viewpoint
Go to defoult viewpoint

Huvigation wheel

* Hide panel — Toggles the navigation panel.
* Next/previous viewpoint — Toggles through the list of viewpoints.

* Return to default viewpoint — Returns focus to original default
viewpoint.

e Slide left/right — Slides the view left or right.

* Navigation wheel — Moves view in one of eight directions.
* Navigation method — Manages scene navigation.

* Wireframe toggle — Toggles scene wireframe rendering.

e Headlight toggle — Toggles camera headlight.

* Help — Invokes the Orbisnap online help.

Navigation
You can navigate around a virtual world using the menu bar, toolbar,
navigation panel, mouse, and keyboard.

Navigation view — You can change the camera position. From the menu
bar, select the Navigation menu Straighten Up option. Alternatively,

Orbisnap Interface

you can click the Straighten Up control from the toolbar or press F9 on the
keyboard. This option resets the camera so that it points straight ahead.

Navigation methods — Navigation with the mouse depends on the
navigation method you select and the navigation zone you are in when you
first click and hold down the mouse button. You can set the navigation
method using one of the following:

® From the menu bar, select the Navigation menu Method option. This
option provides three choices, Walk, Examine, or Fly. See the table
Orbisnap Mouse Navigation on page 7-14.

® From the toolbar, select the drop-down menu that displays the navigation
options Walk, Examine, and Fly.

® From the navigation panel, click the W, E, or F buttons.
® From the keyboard, press Shift+W, Shift+E, or Shift+F.

Navigation zones — You can view the navigation zones for a virtual world
through the menu bar or keyboard.

From the menu bar, select the View menu Navigation Zones option. The
virtual world changes as the navigation zones are toggled on and appear in
the virtual world. Alternatively, from the keyboard, press the F7 key.

The following table summarizes the behavior associated with the movement
modes and navigation zones when you use your mouse to navigate through a
virtual world. Turn the navigation zones on and experiment by clicking and
dragging your mouse in the different zones of a virtual world.

7-13

7 Virtudl Reality Toolbox Stand-Alone Viewer

7-14

Orbisnap Mouse Navigation

Movement
Mode

Zone and Description

Walk

Outer -- Click and drag the mouse up, down, left, or
right to slide the camera in any of these directions in
a single plane.

Inner -- Click and drag the mouse up and down to move
forward and backward. Drag the mouse left and right
to turn left or right.

Examine

Outer -- Click and drag the mouse up and down to
move forward and backward. Drag the mouse left and
right to slide left or right.

Inner -- Click and drag the mouse to rotate the
viewpoint around the origin of the scene.

Fly

Outer -- Click and drag the mouse to tilt the view either
left or right.

Inner -- Click and drag the mouse to pan the camera
up, down, left, or right within the scene.

Center -- Click and drag the mouse up and down to
move forward and backward. Move the mouse left or
right to turn in either of these directions.

If your virtual world contains sensors, these sensors take precedence over
mouse navigation at the sensor’s location. In this case, mouse navigation is
still possible through the right or middle mouse buttons.

Keyboard — You can also use the keyboard to navigate through a virtual
world. It can be faster and easier to issue a keyboard command, especially if
you want to move the camera repeatedly in a single direction. The following
table summarizes the keyboard commands and their associated navigation
functions. Note that the letters presented do not need to be capitalized to
perform their intended function.

Orbisnap Interface

Orbisnap Keyboard Navigation

Keyboard

Command Navigation Function

Backspace Undo move.

F9 Straighten up and make the camera stand on the
horizontal plane of its local coordinates.

+/- Zoom in/out.

Fé6 Toggle the headlight on/off.

F7 Toggle the navigation zones on/off.

F5 Toggle the wireframe option on/off.

F8 Toggle the antialiasing option on/off.

Esc Go to default viewpoint.

Home Return to current viewpoint.

Page Up, Page
Down

Move between preset viewpoints.

F10 Toggle camera binding from the viewpoint.
Shift+W Set the navigation method to Walk.
Shift+E Set the navigation method to Examine.
Shift+F Set the navigation method to Fly.

Shift Up/Down
Arrow

Move the camera forward and backward.

Up/Down Arrow Pan the camera up and down.
Left/Right Arrow, Pan the camera right and left.
Shift+Left/Right

Arrow

Alt+Up/Down Slide up and down.

Arrow

7-15

7 Virtudl Reality Toolbox Stand-Alone Viewer

7-16

Orbisnap Keyboard Navigation (Continued)

Keyboard

Command Navigation Function

Alt+Left/Right Slide left and right.

Arrow

Ctrl+Left/Right/Up/ | Pressing Ctrl alone acquires the examine lock

Down Arrow

at the point of intersection between the line
perpendicular to the screen, coming through the
center of the Orbisnap window, and the closest
visible surface to the camera. Pressing the arrow
keys without releasing Ctrl rotates the viewpoint
about the acquired center point.

Shift+Alt+Left/Right
Arrow

Tilt the camera right and left.

Orbisnap Command Line

Orbisnap Command Line

You can start Orbisnap from any command line with the following:

orbisnap

orbisnap -f vr_filename

orbisnap -c¢ hostname -w "vrworld" -t http -v vrport -g=end_time
orbisnap -t http -v vrport vr_filename_or_hostname -g=end_time
orbisnap -h

No arguments -- Starts the default Orbisnap. There is no loaded vrworld file
and no connection to a Virtual Reality Toolbox server.

-f vr_filename — (Optional) Orbisnap starts and loads the vrworld
contained in vr_filename. If you do not provide vr_filename, Orbisnap
prompts you for the filename.

-¢ hostname — (Optional) Orbisnap starts and connects to the Virtual
Reality Toolbox server located at hostname. hostname can be a hostname
or IP address. If you do not provide hostname, Orbisnap prompts you for
the hostname.

-w vrworld — (Optional) Orbisnap starts, connects to the Virtual Reality
Toolbox server, and loads the virtual world associated with the title
"vrworld". If "vrworld" is not currently active in the Virtual Reality Toolbox
server, the connection to the server does not succeed and the default Orbisnap
starts.

-t http — (Optional) Orbisnap starts and connects to the Virtual Reality
Toolbox server at this HT'TP port (default 8123).

-t vrport — (Optional) Orbisnap starts and connects to the Virtual Reality
Toolbox server listening at this port (default 8124).

vr_filename_or_hostname — (Optional) Orbisnap starts and interprets this
string first as a vrworld filename (for example, vrbounce.wrl). If the string
is not a valid vrworld filename, Orbisnap tries to interpret the string as the
name of the host that is running the Virtual Reality Toolbox server.

7-17

7 Virtudl Reality Toolbox Stand-Alone Viewer

-g=end_time — (Optional) Orbisnap ends when virtual scene time equals
end_time.

-h — (Optional) Orbisnap displays the Orbisnap command-line help.

7-18

Blocks — By Category

Control Input Devices (p. 8-1)
Utilities (p. 8-1)
Virtual Worlds (p. 8-2)

VRML-Related Signals (p. 8-2)

Control Input Devices

Joystick Input

Magellan Space Mouse

Utilities
Cross Product

Normalize Vector

Rotation Between 2 Vectors

Process input from devices
Vector and matrix calculations
Virtual World utilities

VRML signal utilities

Process input from asynchronous
joystick device

Process input from Magellan Space
Mouse device

Cross product of two 3-D vectors
Unit vector parallel to input vector

VRML rotation between two 3-D
vectors

8 Blocks — By Category

Rotation Matrix to VRML Rotation

Viewpoint Direction to VRML
Orientation

Virtual Worlds

VR Sink

VRML-Related Signals

8-2

VR Placeholder

VR Signal Expander

VR Text Output

Convert rotation matrix into
representation used in VRML

Convert viewpoint direction to
VRML orientation

Write data from Simulink model to
virtual world

Send unspecified value to Virtual
Reality Toolbox block

Expand input vectors into fully
qualified VRML field vectors

Allows display of Simulink signal
values as text in VRML scene

Blocks — Alphabetical List

Cross Product

Purpose Cross product of two 3-D vectors
Library Virtual Reality Toolbox
Desc ription Takes two 3-by-1 vectors as input and returns their cross product.
>< Block Parameters Dialog Box
=

Cross Product E Function Block Parameters: Cross Produck x|

|7Subs_l,lstem [mazk] [link]

Crogs product of two 3x1 vectors a=[al a2 a3], b=[b1 b2 b3].
pw=axb=[a2b3 - a3b2)i + (a3b1 - a1b3)j + [a1b2 - a2bl)k

Cahicel Help Apply

Joystick Input

Purpose
Library

Description

W Suesp

fttans [

Jopstick Input

Block
Parameters
Dialog

Box

Process input from asynchronous joystick device
Virtual Reality Toolbox

The Joystick Input block provides a convenient interaction between a
Simulink model and the virtual world associated with a Virtual Reality
Toolbox block. It works only on Windows operating systems.

The Joystick Input block uses axes, buttons, and the point-of-view
selector, if present. You can use this block as you would use any other
Simulink source block. Its output ports reflect the status of the joystick
controls for axes and buttons.

The Joystick Input block also supports force-feedback devices.

=] source Block Parameters: Joystick Inp x|

—Joystick [nput [mazk] [link]

Jopztick input device driver.

—Parameters
Joysztick 1D
v Adiust 120 ports according bo joystick capabiliiies
[T Enable farce-feedback input

(] 4 Cancel Help

Joystick ID — The system ID assigned to the given joystick device.
You can find the properties of the joystick connected to the system in
the Game Controllers section of the system Control Panel.

Adjust I/0 ports according to joystick capabilities — If you select
this check box, the block ports do not have the full width provided by
the Windows Game Controllers interface. Instead, the Virtual Reality

Joystick Input

Toolbox dynamically adjusts the ports to correspond to the capabilities
of the connected joystick each time the model is opened. If the connected
device does not have force-feedback capability, selecting this check box
causes the removal of the force-feedback input from the block, even if
the Enable force-feedback input check box is selected.

Enable force-feedback input — If you select this check box, the
Virtual Reality Toolbox can support force-feedback joystick, steering
wheel, and haptic (one that enables tactile feedback) devices. To use
this feature, you must install Microsoft DirectX Version 8.0 or later.

Output Ports — Depending on the Adjust I/O ports according to
joystick capabilities check box setting previously described, output
ports either have fixed maximum width provided by the system Game
Controllers interface or the output ports change to correspond to the
actual capabilities of the connected joystick.

Output Port | Value Description

Axes Vector of doubles in the Outputs correspond to
range < -1; 1 > the current position of the
joystick in the given axis.
Values are normalized to

the range from -1 to 1.

Buttons Vector of doubles Outputs correspond to

the current status of
0 — Button released joystick buttons.

1 — Button pressed

Output corresponds to
the current status of the
joystick point-of-view
selector.

-1 — Selector inactive
<0; 360> — The angle
of the POV selector, in
degrees

Point of view

Joystick Input

Input Port

Value

Description

Force

Vector of doubles
in the range
<-1;1>

Port active only for
force-feedback devices.
Inputs correspond to
the desired force to be
applied in the given axis.

Usually not all of

the device axes have
force-feedback. The size
of the Force vector is then
smaller than the Axes
vector size.

9-5

Magellan Space Mouse

9-6

Purpose
Library

Description

Tra '-'IEf atiori

4.,
'\#ﬂ'on b

Buttons=

W

Magellan Space Mouse

Data Type
Support

Process input from Magellan Space Mouse device
Virtual Reality Toolbox

The Magellan Space Mouse is a device similar to a joystick in purpose,
but it also provides movement control with six degrees of freedom. This
block reads the status of the Space Mouse and provides some commonly
used transformations of the input. The Space Mouse block supports

all models of Space Mouse and PuckMan devices manufactured by
3Dconnexion (http://www.3dconnexion.com/products.htm). It also
supports USB devices. Space Mouse devices are supported only on
Windows operating systems.

A Magellan Space Mouse block outputs signals of type double.

Magellan Space Mouse

Block
Parameters
Dialog

Box

E! Source Block Parameters: Magellan Spa

—M agellan Space Mousze [mazk)] [link]

tagellan Space Mouze input device driver.

—Parameters

Clutput t_l,lpe:l Speed

[T Dominant mode

[~ Dizable position movement
[T Disable rotation movement
[T Momalize output angle

[Limit position

Position senzitivity:

| 000

Ratation senzitiviby:

([

[nitial pozition:

oo

| nitial ratation:

oo o]

Lower pozition limit;

|[-100-100-100]

|lpper pozition limit;

(100 100 100]

Ok, Cancel

Help

Magellan Space Mouse

Port — Serial port to which the Magellan Space Mouse is connected.
Possible values are COM1...COM4 and USB.

Output Type — This field specifies how the inputs from the device
are transformed:

® Speed — No transformations are done. Outputs are translation and
rotation speeds.

® Position — Translations and rotations are integrated. Outputs are
position and orientation in the form of roll/pitch/yaw angles.

® Viewpoint coordinates — Translations and rotations are
integrated. Outputs are position and orientation in the form of an
axis and an angle. You can use these values as viewpoint coordinates
in VRML.

Dominant mode — If this check box is selected, the mouse accepts
only the prevailing movement and rotation and ignores the others. This
mode is very useful for beginners using the Magellan Space Mouse.

Disable position movement — Fixes the positions at the initial
values, allowing you to change rotations only.

Disable rotation movement — Fixes the rotations at initial values,
allowing you to change positions only.

Normalize output angle — Determines whether the integrated
rotation angles should wrap on a full circle (360°) or not. This is not
used when you set the Output Type to Speed.

Limit position — Determines whether you can limit the upper and
lower positions of the mouse.

Position sensitivity — Mouse sensitivity for translations. Lower
values correspond to higher sensitivity.

Rotation sensitivity — Mouse sensitivity for rotations. Lower values
correspond to higher sensitivity.

Initial position — Initial condition for integrated translations. This is
not used when you set the OQutput Type to Speed.

Magellan Space Mouse

Initial rotation — Initial condition for integrated rotations. This is
not used when you set the Output Type to Speed.

Lower position limit — Position coordinates for the lower limit of
the mouse.

Upper position limit — Position coordinates for the upper limit of
the mouse.

Normalize Vector

9-10

Purpose
Library

Description

Marmalize P

Marmalize Wectar

Unit vector parallel to input vector
Virtual Reality Toolbox

Takes an input vector of any size and outputs the unit vector parallel
to it.
Block Parameters Dialog Box

E Function Block Parameters: Normalize Yector x|

— Subspgtem [mazgk] [link]

Mommalize & wectar.

Output iz the unit vectar parallel ta the input vector. Input can be wectar of any size.
IF the modulug of the input iz lower or equal than specified, the output iz zet to
zeroz(zize(u]).

—Parameters

t aximum modulus bo treat vector az zerno:

0]

ok I Cancel Help Apply

Maximum modulus to treat vector as zero — The output is set to
zeroes if the modulus of the input is equal to or lower than this value.

Rotation Between 2 Vectors

Purpose
Library

Description

o
]
WH

Fotation Between
2 Wectars

VRML rotation between two 3-D vectors
Virtual Reality Toolbox

Takes input of two 3-by-1 vectors and returns a VRML rotation
(specified as a four-element vector defining axis and angle) that is
needed to transform the first input vector to the second input vector.

Block Parameters Dialog Box

E Function Block Parameters: Rotation Between 2 ¥e ﬂ
Subsgyztem [maszk] [link)

Calculates a rotation between two vectors,

Output iz a WRML rotation [gpecified az 4-element vector defining asis and angle |
needed to transform the first input to the second input. Both inputz must be 3w
weChors.

Cahicel Help Apply

9-11

Rotation Matrix to VRML Rotation

9-12

Purpose
Library

Description

] —=- ¢~
WR

Rotation hd atrix
to WRhL Rotation

Convert rotation matrix into representation used in VRML
Virtual Reality Toolbox

Takes an input of a rotation matrix and outputs the axis/angle rotation
representation used for defining rotations in VRML. The rotation
matrix can be either a 9-element column vector or a 3-by-3 matrix
defined columnwise.

Block Parameters Dialog Box

E Function Block Parameters: Rotation Matrix to YRML Rotation

— Subspgtem [magk] (link)

Corrverts Botation b atnis [defined colummeize as 343 matrix
or az S-element column vector] into the Axis £ Angle
rotation reprezentation uged for defining rotations in WRML.

—Parameters

b amimLnn value bo treat input value az zero:
le-12

Ok I Cancel Help Apply

Maximum value to treat input value as zero — The input is
considered to be zero if it is equal to or lower than this value.

Rotation Matrix

A representation of a three-dimensional spherical rotation as a 3-by-3
real, orthogonal matrix R: R'R = RR™ = I, where I is the 3-by-3 identity
and RT is the transpose of R.

Rl 1 R12 R13 Rxx ny sz
R=|Ry1 Ryy Rp3 |= Ryx Ryy Ryz
R3 1 R32 R33 sz Rzy Rzz

Rotation Matrix to VRML Rotation

In general, R requires three independent angles to specify the rotation
fully. There are many ways to represent the three independent angles.
Here are two:

® You can form three independent rotation matrices R, R,, R, each
representing a single independent rotation. Then compose the full
rotation matrix R with respect to fixed coordinate axes as a product
of these three: R = R,*R,*R,. The three angles are Euler angles.

* You can represent R in terms of an axis-angle rotation n = (n_n ,n,)
and 0 with n*n = 1. The three independent angles are 6 and the two
needed to orient n. Form the antisymmetric matrix:

0 -n, n,
J =| n, 0 -n,
-n, ny 0

Then Rodrigues’ formula simplifies R:

R=exp(0J)=1+Jsin0+J%(1-cos)

9-13

Viewpoint Direction to VRML Orientation

Purpose Convert viewpoint direction to VRML orientation
Libra ry Virtual Reality Toolbox
Description Takes a viewpoint direction (3-by-1 vector) as input and outputs the

corresponding VRML viewpoint orientation (four-element VRML
ARl rotation vector).
R Block Parameters Dialog Box

“iewpaint Direction
to WRML Orientation
E Function Block Parameters: Yiewpoink Directio x|

Subsypstem [maszk] [link]

Corvverts viewwpoint direction to WRML orientation,
Converts the viewpoint direction, specified by a wector of 3 elements, to a
cormespanding WAL viewpaint orientation [4-element YRML rotation vectar].

Cancel Help Apply

9-14

VR Placeholder

Purpose
Library
Description

wR =}

WH Placeholder

Data Type
Support

Block
Parameters
Dialog

Box

Send unspecified value to Virtual Reality Toolbox block
Virtual Reality Toolbox

The VR Placeholder block sends out a special value that is interpreted
as “unspecified” by the VR Sink block. When this value appears on the
VR Sink input, whether as a single value or as an element of a vector,
the appropriate value in the virtual world stays unchanged. Use this
block to change only one value from a larger vector. For example, use
this block to change just one coordinate from a 3-D position.

The value output by the VR Placeholder block should not be modified
before being used in other VR blocks.

A VR Placeholder block outputs signals of type double.

E! Block Parameters: ¥R Placeholder x|

—WR Placeholder (mazk)] [link]

Generate a vector of YR Placeholder signalz uzed for magking the
unused or unatfected components of WRML figlds.

—Parameters

Output width

Ji

ak. LCancel | Help |

Output Width — Length of the vector containing placeholder signal
values.

9-15

VR Signal Expander

Purpose Expand input vectors into fully qualified VRML field vectors
Libra ry Virtual Reality Toolbox

Description The VR Signal Expander block creates a vector of predefined length,
using some values from the input ports and filling the rest with
placeholder signal values.

——
o

WR Signal Expander

Data Type A VR Signal Expander block accepts and outputs signals of type double.
Support
BIOCk []Block Parameters: ¥R Signal Expander d |
Pa rameters —%R Signal Expander [mask] [link]
H Expand input wectar into a fully qualified WAL field signal, filing the blank. positions in
Dla Iog the output port with the YR Placeholder signal.

Box

Input: The wector of inputs to be mapped into the output port,

COutput wdth: The width of the output port,

Output zignal indices: Positions of output vectar at which the input signal elements
appear. The remaining pogitions are filled with the WR Placeholder zignal.

—Parameters
Cutput width
a
DOutput zignal indices

24

ok LCancel | Help | Apply |

Output width — How long the output vector should be.

Output signal indices — Vector indicating the position at which the
input signals appear at the output. The remaining positions are filled
with VR Placeholder signals.

9-16

VR Signal Expander

For example, suppose you want an input vector with two signals and an
output vector with four signals, with the first input signal in position 2
and the second input signal in position 4. In the Output width box,
enter 4 and in the Qutput signal indices box, enter [2,4]. The first
and third output signals are unspecified.

9-17

VR Sink

Purpose
Library

Description

WR Sink

Data Type
Support

9-18

Write data from Simulink model to virtual world

Virtual Reality Toolbox

The VR Sink block writes values from its ports to virtual world fields
specified in the Block Parameters dialog box.

A VR Sink block accepts all meaningful data types on input. The block
converts these data types to natural VRML types as necessary. These
data types include logicals, many types of signed and unsigned integers,
singles, and doubles. For further details, see “VRML Field Data Types”
on page 5-21.

VR Sink

Block
Parameters
Dialog

Box

=): Parameters: ¥R Sink

W Sink

Wites Simulink values to virtual world node fields. Fields ta be written are marked by
checkboxes in the tree view. Every marked field corresponds to an input port of the block.

‘Wiorld properties

Source file

|| Browese |

WRML Tree

¥ St node types

¥ Shi fisld types

ol x|

P Mo world loaded

X Moworld filename specified.

e | ey | Reload |

Output
I Open WRML Viewer automatically

™ Aoy viewing from the Internet

Description:

Elock properties

Sample time (-1 for inherit):

0.1

Ok | Cancel | Help | Apply |

Source file — VRML file name specifying the virtual world this block
is connected to. The View button allows you to view the world in the
Virtual Reality Toolbox viewer or a Web browser. The Edit button
launches an external VRML editor, and the Reload button reloads the
world after you change it. By default, the full path to the associated
.wrl file appears in this text box. If you enter only the filename in this
box, the Virtual Reality Toolbox assumes that the .wr1l file resides in
the same directory as the model file.

Open VRML Viewer automatically — If you select this check box,
the default VRML viewer displays the virtual world after loading the
Simulink model.

Allow viewing from the Internet — If you select this check box,
the virtual world is accessible for viewing on a client computer. If it is
not selected, the world is visible only on the host computer. This is

9-19

VR Sink

9-20

equivalent to the RemoteView property of a vrworld object. See Chapter
4, “MATLAB Interface”.

Description — Description that is displayed in all virtual reality object
listings, in the title bar of the Virtual Reality Toolbox viewer, and in the
list of virtual worlds on the Virtual Reality Toolbox HTML page. This
is equivalent to the Description property of a vrworld object. See
Chapter 4, “MATLAB Interface”.

Sample time — Enter the sample time or -1 for inherited sample time.

Note To better record the animation, you might want to experimentally
change the value of this property.

VRML tree — This box shows the structure of the VRML file and the
virtual world itself.

Nodes that have names are marked with red arrows and can be accessed
from MATLAB. Nodes without names, but whose children are named,
are also marked with red arrows. This marking scheme makes it
possible for you to find all accessible nodes by traversing the tree using
arrows. Other nodes have a blue dot before their names.

Fields with settable values have check boxes. Use these check boxes
to select the fields you want Simulink to output values to. For every
selected field, an input port is created in the block. Input ports are
assigned to the selected nodes and fields in the order corresponding to
the VRML file.

Fields whose values cannot be written (because their parent nodes do
not have names, or because they are not of VRML data class eventIn or
exposedField) have an X-shaped icon.

Show node types — If you select this check box, node types are shown
in the VRML tree.

Show field types — If you select this check box, field types are shown
in the VRML tree.

VR Sink

Show field values — If you select this check box, the dialog box shows,
in the VRML tree, the current numeric values of the fields.

You can use the Simulink get_param and set_param functions to access
the following VR Sink block dialog parameters:

Property Possible Values

FieldsWritten | String containing a list of NodeName .FieldName
pairs, separated by #

For example,

Membrane.translation#Membrane.rotation

SampleTime String containing an expression that evaluates to a
valid Simulink sample time value

WorldFileName | Associated VRML filename

Note Use these parameters with care. It is your responsibility to
maintain consistency in the block parameters. For example, if you
change the WorldFileName property, also change the FieldsWritten
property to reflect the actual nodes and fields accessible in the newly
associated VRML file.

9-21

VR Text Output

Purpose
Library

Description

—= TxT
R

WE Text Output

Block
Parameters
Dialog

Box

9-22

Allows display of Simulink signal values as text in VRML scene
Virtual Reality Toolbox

The VR Text Output can display Simulink values of signal as text in
a VRML scene.

Text rendering is a demanding task for VRML viewers, so there is
generally be a decrease in rendering speed when outputting text. This
effect increases with the complexity of the text output. You can improve
the performance if you limit the output from the Simulink model to
only the values of signals that change (e.g., modeling captions) or use
more static-text nodes.

=] sink Block Parameters: ¥R Text Oukpuk |

—WH Text Output [mask)

Format the input data under control of the specified format gting and output resulting
ghring to the zelected Text node in the aszociated virtual world,

For pogzible format gting definitions and block output see documentation for sprintf().
Enceptions:

-WR Test Output supportz only the Sn egcape non-printing character

- %2 and ¥c conversion characters are not allowed in the format gting

Input: The wector of walues to be used az spiintf[] arguments.

—Parameters

Aszociated VRML file;

Aszociated Text node;

Farmat string:

[~ Ersure that a viewen window (s open duritg simulation

Cancel Help Apply

VR Text Output

Associated VRML file — VRML file specifying the virtual world to
which text is output.

Associated Text node — Text node within the virtual world to which
text is output.

Format string — Format used for output text. This block uses
sprintf () to format the output strings. Like sprintf(), it works in
a vectorized fashion, where the format string is recycled through the
components of the input vector. This block does not support the %c
and %s conversion formats, as signals in Simulink cannot have both
characters and strings.

9-23

Functions — By Category

MATLAB Interface Functions
(p. 10-1)

vrworld Object Methods (p. 10-2)
vrnode Object Methods (p. 10-3)

vrfigure Object Methods (p. 10-3)

Interface with virtual worlds and
miscellaneous features

Interact with the virtual scene

Get and set the VRML node
properties

Get and set the Virtual Reality
Toolbox viewer properties

MATLAB Interface Functions

vrclear

vrclose
vrdrawnow

vrgetpref

vrinstall

vrlib

vrplay

vrsetpref

Remove all closed virtual worlds
from memory

Close virtual reality figure windows
Update virtual world

Values of Virtual Reality Toolbox
preferences

Install and check Virtual Reality
Toolbox components

Open Simulink block library for
Virtual Reality Toolbox

Play VRML animation file

Change Virtual Reality Toolbox
preferences

'IO Functions — By Category

10-2

vrview

vrwho

vrwhos

vrworld Object Methods

vrworld

vrworld/close
vrworld/delete

vrworld/edit

vrworld/get
vrworld/isvalid
vrworld/nodes
vrworld/open
vrworld/reload
vrworld/save

vrworld/set

vrworld/view

View virtual world using Virtual
Reality Toolbox viewer or Web
browser

List virtual worlds in memory

List details about virtual worlds in
memory

Create new vrworld object
associated with virtual world

Close virtual world
Remove virtual world from memory

Open virtual world file in external
VRML editor

Property value of vrworld object

1 if vrworld object is valid, 0 if not
List nodes available in virtual world
Open virtual world

Reload virtual world from VRML file
Write virtual world to VRML file

Change property values of vrworld
object

View virtual world

vrnode Object Methods

vrnode Object Methods

vrnode

vrnode/delete
vrnode/fields
vrnode/get
vrnode/getfield

vrnode/isvalid

vrnode/set

vrnode/setfield

vrnode/sync

vrfigure Object Methods

vrfigure

vrfigure/capture

vrfigure/close
vrfigure/get
vrfigure/isvalid

vrfigure/set

vrfigure/vrgcbf

vrfigure/vrgcf

Create node or handle to existing
node

Remove vrnode object

VRML field summary of node object
Property value of vrnode object
Field value of vrnode object

Return 1 if vrnode object is valid, 0
if not

Change property of virtual world
node

Change field value of vrnode object

Enable or disable synchronization of
VRML fields with client

Create new virtual reality figure

Create RGB image from virtual
reality figure

Close virtual reality figure
Property value of vrfigure object
1 if vrfigure object is valid, 0 if not

Change property value of vrfigure
object

Current callback vrfigure object

Handle for active virtual reality
figure

10-3

'IO Functions — By Category

10-4

Functions — Alphabetical
List

vrclear

Purpose

Syntax

Description

See Also

11-2

Remove all closed virtual worlds from memory

vrclear
vrclear('-force')

The vrclear function removes from memory all virtual worlds that are
closed and invalidates all vrworld objects related to them. This function
does not affect open virtual worlds. Open virtual worlds include those
loaded from Simulink. You use this command to

¢ Ensure that the maximum amount of memory is freed before a
memory-consuming operation takes place.

® Perform a general cleanup of memory.

The vrclear('-force') command removes all virtual worlds from
memory, including worlds opened from Simulink.

vrworld, vrworld/delete

vrclose

Purpose

Syntax

Description

Examples

See Also

Close virtual reality figure windows

vrclose
vrclose all

vrclose and vrclose all close all the open virtual reality figures.

Open a series of virtual reality figure windows by typing
vrpend
vrbounce
vrlights

Arrange the viewer windows so they are all visible. Type
vrclose

All the virtual reality figure windows disappear from the screen.

vrfigure/close

11-3

vrdrawnow

Purpose Update virtual world
Syntax vrdrawnow
Description vrdrawnow removes from the queue pending changes to the virtual

world and makes these changes to the scene in the viewer.

Changes to the scene are normally queued and the views are updated
when

® MATLAB is idle for some time (no Simulink model is running and no

M-file is being executed).
® A Simulink step is finished.

11-4

vrfigure

Purpose

Syntax

Description

Examples

Create new virtual reality figure

f = vrfigure(world)

f = vrfigure(world,position)

f = vrfigure

f = vrfigure([1])

f = vrfigure(world) creates a new virtual reality figure showing the

specified world and returns an appropriate vrfigure object. The input
argument world must be a vrworld object.

f = vrfigure(world,position) creates a new virtual reality figure
at the specified position.

f = vrfigure returns an empty vrfigure object that does not have a
visual representation.

f = vrfigure([]) returns an empty vector of type vrfigure.
Create a vrworld object. At the MATLAB command prompt, type
myworld = vrworld('vrmount.wrl')

The vrworld object myworld is associated with the virtual world
vrmount.wrl.

Next, open the virtual world using the vrworld object. You must open
the virtual world before you can view it. At the MATLAB command
prompt, type

open(myworld)

You can now view the virtual world in the Virtual Reality Toolbox
viewer by typing

f = vrfigure(myworld)

Your viewer opens and displays the virtual scene.

11-5

vrfigure

See Also vrworld, vrworld/open

11-6

vrfigure/capture

Purpose
Syntax

Description

Examples

Create RGB image from virtual reality figure
image_capture = capture(vrfigure_object)

image capture = capture(vrfigure_object) captures a virtual
reality figure into a TrueColor RGB image. This image can be displayed
by the image command and subsequently printed.

Create a vrworld object. At the MATLAB command prompt, type
myworld = vrworld('vrmount.wrl')

The vrworld object myworld is associated with the virtual world
vrmount.wrl.

Next, open the virtual world using the vrworld object. You must open
the virtual world before you can view it. At the MATLAB command
prompt, type

open(myworld)

You can now view the virtual world in the Virtual Reality Toolbox
viewer by typing

f = vrfigure(myworld)

Your viewer opens and displays the virtual scene. Next, create an RGB
image by typing

image_capture = capture(f);
Lastly, view the image
image (image_capture)

The scene from the viewer window is displayed in a MATLAB figure
window.

11-7

vrfigure/capture

See Also vrfigure

11-8

vrfigure/close

Purpose

Syntax
Arguments

Description

Examples

See Also

Close virtual reality figure

close(vrfigure_object)

vrfigure_object Name of a figure object.

close(vrfigure_object) closes the virtual reality figure referenced by
vrfigure object. If vrfigure object is a vector of vrfigure handles,
then multiple figures are closed.

myworld = vrworld('vrpend.wrl')
open(myworld)

f = vrfigure(myworld)

close(T)

vrfigure, vrworld, vrworld/open

11-9

vrfigure/get

Purpose Property value of vrfigure object

Syntax get(vrfigure object)
x = get(vrfigure object, 'property name')

Arguments vrfigure object Name of a vrfigure object.
property_name Name of the property.

Description get(vrfigure object) lists all the properties of the vrfigure object.
This is useful when you want to determine the current values of these
properties. Use a command like the following to return a value of the
specified property of the vrfigure object.

x = get(vrfigure object, 'property name') returns a value of the
specified property of the vrfigure object.

The following are properties of vrfigure objects.

Property Value Description

Antialiasing 'off' | 'on' Determines whether antialiasing
o , is used when rendering scene.
Disifeellts * @y Antialiasing smooths textures
by interpolating values between
texture points. Read/write.

CameraBound ‘off' | 'on' Controls whether or not the
L camera moves with the current
Default: 'on . . .
viewpoint. Read/write.
CameraDirection Vector of three doubles Specifies the camera direction
relative to the direction of the
current viewpoint. Read/write.
CameraDirectionAbs Vector of three doubles Specifies the camera direction in

world coordinates. Read only.

11-10

vrfigure/get

Property Value Description
CameraPosition Vector of three doubles Specifies the camera position
relative to the position of the
current viewpoint. Read/write.
CameraPositionAbs Vector of three doubles Specifies the camera position in
world coordinates. Read only.
CameraUpVector Vector of three doubles Specifies the camera up vector
relative to the up vector of the
current viewpoint. Read/write.
CameraUpVectorAbs Vector of three doubles Specifies the camera up vector in
world coordinates. Read only.
CaptureFileFormat ‘tif' | 'png’ Specifies file format for a captured
Default: 'tif' frame file. Read/write.
CaptureFileName String. Specifies the frame capture
filename. The string can contain
Default:
Lo N , tokens that are replaced by
%f_anim_%n.ext .. .

- - the corresponding information
when the frame capture takes
place. For further details, see
“Frame Capture and Animation
Recording File Tokens” on page
6-17. Read/write.

DeleteFcn String Specifies the callback invoked
when closing the vrfigure object.
Read/write.
Headlight ‘off' | 'on' Turns the headlight on or off.
L Read/write.
Default: 'on

11-11

vrfigure/get

Property Value Description

Lighting ‘off' | 'on' Specifies whether the lighting
Default: 'on' is taken into account when

’ rendering. If it is off, all the
objects are drawn as if uniformly
lit. Read/write.

MaxTextureSize 'auto' | 32 <= x <=video | Sets the maximum pixel size
card limit, where x is a of a texture used in rendering
power of 2 (video card limit | vrfigure objects. The smaller
is typically 1024 or 2048) the size, the faster the texture

can render. Increasing this value
improves image quality but
decreases performance. A value of
'auto' sets the maximum possible
pixel size. If the value you enter
is unsuitable, a warning might
trigger. Virtual Reality Toolbox
then automatically adjusts the
property to the next smaller
suitable value.

Name String Specifies the name of this

vrfigure object. Read/write.

NavMode 'fly' | 'examine' Specifies navigation mode.
'walk' Read/write.

Default: 'examine'’

NavPanel ‘opaque' | 'translucent' | Controls the appearance of
| 'none' | 'halfbar' | the navigation panel in the
'bar' Virtual Reality Toolbox viewer.

Default: 'halfbar'

Read/write.

11-12

vrfigure/get

Property Value Description
NavSpeed 'very slow' | 'slow' Specifies navigation speed.
| 'normal' | 'fast' | Read/write.
‘very fast'
Default: 'normal
NavZones 'off' | 'on' Toggles navigation zones on/off.
Default: 'off Read/write.
Position Vector of four doubles Specifies the screen coordinates of
this vrfigure object. Read/write.
Record2D ‘off' | 'on' Enables 2-D offline animation file
Default: ' off " recording. Read/write.
Record2DCompress "' 'auto' | Specifies the compression method
Method 'lossless' | for creating 2-D animation files.
'codec_code' The codec code must be registered
Default: 'auto’ in th(? system. See the MATLAB
function documentation for
avifile. Read/write.
Record2DCompress 0-100 Specifies the quality of 2-D
Quality Default: ' 75" ammathn file compression.
Read/write.
Record2DFileName String. Specifies the 2-D offline animation
filename. The string can contain
Default:
o NN , tokens that are replaced by
%f_anim_%n.ext .. .

- - the corresponding information
when the animation recording
takes place. For further details,
see “Animation Recording File
Tokens” on page 4-10. Read/write.

StatusBar ‘off' | 'on' Toggles the status bar at the
D bottom of the Virtual Reality
Default: 'on

Toolbox viewer. Read/write.

11-13

vrfigure/get

Property Value Description
Textures ‘off' | 'on' Turns texture rendering on or off.
Default: 'on' AT
Toolbar ‘off' | 'on' Toggles toolbar on the Virtual
L Reality Toolbox viewer.
Default: 'on Read/write.
Transparency ‘off' | 'on' Specifies whether or not
Default: 'on' !;ransparency information 1s taken
into account when rendering.
Read/write.
Viewpoint String. Specifies the vrfigure object’s
1P e ilemoaint doss active viewpoint. Read/write.
not have a name, value is
empty.
Wireframe 'off' | 'on' Specifies whether objects are
Default: ' off" drawn as solids or wireframes.
Read/write.
World vrworld object Specifies the world this vrfigure
object is displaying. Read only.
ZoomFactor Double Specifies the camera zoom factor.
Read/write.
Examples Create a vrworld object:

11-14

myworld = vrworld('vrmount.wrl');

The vrworld object myworld is associated with the virtual world
vrmount.wrl. Open the world:

open(myworld)

Create a vrfigure object:

vrfigure/get

f = vrfigure(myworld);

You can now get the object properties of the vrfigure object f:
get(f)

This returns the following object properties:

AntiAliasing = 'off'

CameraBound = 'on'

CameraDirection = [0 0 -1]
CameraDirectionAbs = [0 -0.198669 -0.980067]
CameraPosition = [0 0 0]

CameraPositionAbs = [20 8 50]
CameraUpVector = [0 1 0]

CameraUpVectorAbs = [0 0.980067 -0.198669]
CaptureFileFormat = 'tif'

CaptureFileName = 'S%f_anim_%n.tif'
DeleteFcn = '

Headlight = 'on'

Lighting = 'on'

MaxTextureSize = 2048

Name = 'VR Car in the Mountains'
NavMode = 'examine'

NavPanel = 'halfbar'

NavSpeed = 'normal'’

NavZones = 'off'

Position = [5 92 576 380]
Record2D = 'off'
Record2DCompressMethod = 'auto'
Record2DCompressQuality = 75
Record2DFileName = 'S%f_anim_%n.avi'
StatusBar = 'on'

Textures = 'on'

Toolbar = 'on'

Transparency = 'on'

Viewpoint = 'View 1 - Observer'

11-15

vrfigure/get

Wireframe = 'off'
World = vrworld object: 1-by-1
ZoomFactor = 1

Antialiasing = 'off'

CameraBound = 'on'

CameraDirection = [0 O -1]
CameraDirectionAbs = [0 -0.198669 -0.980067]
CameraPosition = [0 0 0]

CameraPositionAbs = [20 4 50]
CameraUpVector = [0 1 0]

CameraUpVectorAbs = [0 0.980067 -0.198669]
Headlight = 'on'

Lighting = 'on'

Name = 'VR Car in the Mountains'
PanelMode = 'opaque'

Textures = 'on'

Transparency = 'on'

Viewpoint = 'Viewl'

Wireframe = 'off'

ZoomFactor = 1

See Also vrfigure, vrfigure/set

11-16

vrfigure/isvalid

Purpose

Syntax
Arguments

Description

See Also

1 if vrfigure object is valid, 0 if not

x = isvalid(vrfigure_object_vector)

vrfigure_object_vectoName of an array of vrfigure objects.

This method detects whether the vrfigure handles are valid and
returns an array that contains a 1 where the vrfigure handles are
valid and returns a 0 where they are not.

vrnode/isvalid, vrworld/isvalid

11-17

vrfigure/set

Purpose Change property value of vrfigure object

Syntax set(vrfigure_object, 'property name', property value)

Arguments vrfigure object Name of a vrfigure object.

property_name Name of the property you want to set.
property value New value of the property.

Description The set(vrfigure object) method allows you to set the property
value of a vrfigure object. This method is useful when you want to
change the value of a property.

The following are properties of vrfigure objects.
Property Value Description
Antialiasing ‘off' | 'on' Determines whether antialiasing
o , is used when rendering scene.
Lzl " eir Antialiasing smooths textures by
interpolating values between texture
points. Read/write.
CameraBound ‘off' | 'on' Controls whether or not the camera
Default: 'on' moves W}th the current viewpoint.
Read/write.
CameraDirection Vector of three doubles | Specifies the camera direction relative
to the direction of the current viewpoint.
Read/write.
CameraDirectionAbs | Vector of three doubles | Specifies the camera direction in world
coordinates. Read only.
CameraPosition Vector of three doubles | Specifies the camera position relative
to the position of the current viewpoint.
Read/write.

11-18

vrfigure/set

Property Value Description
CameraPositionAbs Vector of three doubles | Specifies the camera position in world
coordinates. Read only.
CameraUpVector Vector of three doubles | Specifies the camera up vector
relative to the up vector of the current
viewpoint. Read/write.
CameraUpVectorAbs Vector of three doubles | Specifies the camera up vector in world
coordinates. Read only.
CaptureFileFormat ‘tif' | 'png’ Specifies file format for a captured
Default: 'tif" frame file. Read/write.
CaptureFileName String. Specifies the frame capture filename.
The string can contain tokens that
Default: .
o N , are replaced by the corresponding
%f_anim_%n.ext . .
- - information when the frame capture
takes place. For further details,
see “Frame Capture and Animation
Recording File Tokens” on page 6-17.
Read/write.
DeleteFcn String Specifies the callback invoked
when closing the vrfigure object.
Read/write.
Headlight ‘off' | 'on' Turns the headlight on or off.
Default: 'on' Read/write.
Lighting ‘off' | 'on' Specifies whether the lighting is taken
D into account when rendering. If it is off,
Default: 'on

all the objects are drawn as if uniformly
lit. Read/write.

11-19

vrfigure/set

Property Value Description
MaxTextureSize 'auto' | 32 <=x<= Sets the maximum pixel size of a
video card limit, where | texture used in rendering vrfigure
x is a power of 2 (video | objects. The smaller the size, the faster
card limit is typically the texture can render. Increasing
1024 or 2048) this value improves image quality
but decreases performance. A value
of 'auto' sets the maximum possible
pixel size. If the value you enter
is unsuitable, a warning might
trigger. Virtual Reality Toolbox then
automatically adjusts the property to
the next smaller suitable value.
Name String Specifies the name of this vrfigure
object. Read/write.
NavMode "fly' | 'examine' | Specifies navigation mode. Read/write.
'walk'
Default: 'examine’
NavPanel ‘opaque' | Controls the appearance of the
"translucent' | navigation panel in the Virtual Reality
‘none' | 'halfbar' | | Toolbox viewer. Read/write.
"bar'
Default: 'halfbar'
NavSpeed 'very slow' | 'slow' | Specifies navigation speed. Read/write.
| 'normal' | 'fast'
| 'very fast'
Default: 'normal!
NavZones ‘off' | 'on' Toggles navigation zones on/off.
Default: 'off"' Read/write.
Position Vector of four doubles Specifies the screen coordinates of this

vrfigure object. Read/write.

11-20

vrfigure/set

Property Value Description
Record2D ‘off' | 'on' Enables 2-D offline animation file
Default: ' off" recording. Read/write.
Record2DCompress "' | 'auto' | Specifies the compression method
Method "lossless’' | for creating 2-D animation files.
'codec_code' The codec code must be registered
. , in the system. See the MATLAB
Default: 'auto . . o
function documentation for avifile.
Read/write.
Record2DCompress 0-100 Specifies the quality of 2-D animation
Quality Default: ' 75" file compression. Read/write.
Record2DFileName String. Specifies the 2-D offline animation
filename. The string can contain tokens
Default: .
, ; , that are replaced by the corresponding
%f_anim_%n.ext

- - information when the animation
recording takes place. For further
details, see “Animation Recording File
Tokens” on page 4-10. Read/write.

StatusBar ‘off' | 'on' Toggles the status bar at the bottom
of the Virtual Reality Toolbox viewer.
Default: 'on' .
Read/write.
Textures ‘off' | 'on' Turns texture rendering on or off.
Default: 'on' Eeschpic
Toolbar ‘off' | 'on' Toggles toolbar on the Virtual Reality
, Toolbox viewer. Read/write.
Default: 'on
Transparency ‘off' | 'on' Specifies whether or not transparency
information is taken into account when
Default: 'on'

rendering. Read/write.

11-21

vrfigure/set

Property Value Description

Viewpoint String. Specifies the vrfigure object’s active

If active viewpoint does vieTen, [Reatl e

not have a name, value
is empty.

Wireframe ‘off' | 'on' Specifies whether objects are drawn as
, , solids or wireframes. Read/write.
Default: 'off

World vrworld object Specifies the world this vrfigure object
is displaying. Read only.
ZoomFactor Double Specifies the camera zoom factor.
Read/write.
Examples Create a vrworld object.

myworld = vrworld('vrmount.wrl');

The vrworld object myworld is associated with the virtual world
vrmount.wrl. Open the world:

open(myworld)
Create a vrfigure object:

f = vrfigure(myworld);
The VR Car in the Mountains virtual world opens in the Virtual Reality
Toolbox viewer. You can now set the object properties of the vrfigure

object f:

set(f, 'Name', 'Car on a Mountain Road')

You can see that the name of the virtual world has changed in the
viewer.

11-22

vrfigure/set

See Also vrfigure, vrfigure/get

11-23

vrfigure/vrgcf

Purpose Handle for active virtual reality figure
Syntax h = vrgcf
Description h = vrgcf returns the handle of the current virtual reality figure. The

current virtual reality figure is the currently active virtual reality figure
window in which you can get and set the viewer properties. If no virtual
reality figure exists, MATLAB creates one and returns its handle.

This method is most useful to query and set virtual reality figure
properties.

See Also vrfigure, vrfigure/get, vrfigure/set

11-24

vrfigure/vrgcbf

Purpose
Syntax

Description

Current callback vrfigure object
f = vrgcbf

f = vrgcbf returns a vrfigure object representing the virtual reality
figure that contains the callback currently being executed.

When no virtual reality figure callbacks are executing, vrgcbf returns
an empty array of vrfigure objects.

11-25

vrgetpref

Purpose

Syntax

Arguments

Description

11-26

Values of Virtual Reality Toolbox preferences

= vrgetpref

= vrgetpref('preference_name')

= vrgetpref ('preference_name','factory')
= vrgetpref('factory')

X X X X

preference_name Name of the preference to read.

x = vrgetpref returns the values of all the Virtual Reality Toolbox
preferences in a structure array.

X = vrgetpref('preference_name') returns the value of the specified
preference. If preference_name is a cell array of preference names, a
cell array of corresponding preference values is returned.

x = vrgetpref ('preference_name','factory') returns the default
value for the specified preference.

x = vrgetpref('factory') returns the default values for all the
preferences.

The following preferences are defined. For preferences that begin
with the string DefaultFigure or DefaultWorld, these values are the
default values for the corresponding vrfigure or vrworld property:

Preference Description

DataTypeBool Specifies the handling of the VRML
Bool data type for vrnode/setfield
and vrnode/getfield. Valid values
are 'logical' and 'char'. If set
to 'logical', the VRML Bool data
type is returned as a logical value.
If set to 'char', the Bool data type
is returned 'on' or 'off'. Default
is 'logical’.

vrgetpref

Preference

Description

DataTypeInt32

Specifies handling of the

VRML Int32 data type

for vrnode/setfield and
vrnode/getfield. Valid values
are 'int32' and 'double’'. If set
to 'int32', the VRML Int32 data
type is returned as int32. If set to
'double’, the Int32 data type is
returned as 'double'. Default is
"double’.

DataTypeFloat

Specifies the handling of

the VRML float data type

for vrnode/setfield and
vrnode/getfield. Valid values
are 'single' and 'double’'. If set
to 'single', the VRML Float and
Color data types are returned as
'single'. If set to 'double’, the
Float and Color data types are
returned as 'double'. Default is
‘double’.

DefaultFigureAnti
Aliasing

Determines whether antialiasing is
used by default for new vrfigure
objects. Valid values are 'off' and
‘on'.

DefaultFigureDeleteFcn

Specifies the default callback invoked
when closing a vrfigure object.

DefaultFigureLighting

Specifies whether the lights are
rendered by default for new
vrfigure objects. Valid values are
'off' and 'on'.

11-27

vrgetpref

11-28

Preference Description
DefaultFigureMax Specifies the default maximum size
TextureSize of a texture used in rendering new

vrfigure objects. Valid values are
'auto' and 32 <= x <= video card
limit, where x is a power of 2.

DefaultFigureNavPanel

Specifies the default appearance

of the control panel in the viewer.
Valid values are 'opaque’,
"translucent’', 'none', 'halfbar’,
'bar', and 'factory'. Default is
"halfbar'.

DefaultFigureNavZones

Specifies whether the navigation
zone is on or off by default for new
vrfigure objects. Valid values are
'off' and 'on'.

DefaultFigurePosition

Sets the default initial position and
size of the Virtual Reality Toolbox
viewer window. Valid value is a
vector of four doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression
method for creating 2-D animation
files for new vrfigure objects. Valid
values are '', 'auto', 'lossless’,
and 'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D
animation file compression for new
vrfigure objects. Valid values are
0-100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline
animation filename for new
vrfigure objects.

vrgetpref

Preference

Description

DefaultFigureRecord2DFPS

Specifies the default frames per
second playback speed.

DefaultFigureStatusBar

Specifies whether the status bar
appears by default at the bottom of
the Virtual Reality Toolbox viewer
for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureToolBar

Specifies whether the toolbar
appears by default on the Virtual
Reality Toolbox viewer for new
vrfigure objects. Valid values are
'off' and 'on'.

DefaultFigure
Transparency

Specifies whether or not
transparency information is

taken into account when rendering
for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureWireframe

Specifies whether objects are drawn
as solids or wireframes by default for
new vrfigure objects. Valid values
are 'off' and 'on'.

DefaultViewer

Specifies which viewer is used to
view a virtual scene. The Virtual
Reality Toolbox viewer is used when
the preference is set to 'internal'.
The Web browser is used when this
preference is set to 'web'. Default is
"internal’.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation
filename for new vrworld objects.

11-29

vrgetpref

Preference Description

DefaultWorldRecordMode Specifies the default animation
recording mode for new vrworld
objects. Valid values are 'manual'
and 'scheduled'.

DefaultWorldRecord Specifies the default start and
Interval stop times for scheduled animation
recording for new vrworld objects.
Valid value is a vector of two doubles.

DefaultWorldRemoteView Specifies whether the virtual world
is enabled by default for remote
viewing for new vrworld objects.
Valid values are 'off' and 'on'.

DefaultWorldTimeSource Specifies the default source of
the time for new vrworld objects.
Valid values are 'external' and

'freerun'.
Editor Path to the VRML editor. If this path
is empty, the MATLAB editor is used.
HttpPort IP port number used to access the

VR server over the Web via HTTP. If
you change this preference, you must
restart MATLAB before the change
takes effect.

TransportBuffer Length of the transport buffer
(network packet overlay) for
communication between the VR
server and its clients.

11-30

vrgetpref

Preference Description

TransportTimeout Amount of time the VR Toolbox
server waits for a reply from the
client. If there is no response from
the client, the VR Toolbox server
disconnects from the client.

VrPort IP port used for communication
between the VR server and its
clients. If you change this preference,
you must restart MATLAB before
the change takes effect.

The HttpPort, VrPort, and TransportBuffer preferences affect
Web-based viewing of virtual worlds. DefaultFigurePosition and
DefaultNavPanel affect the Virtual Reality Toolbox viewer.

DefaultFigureNavPanel — Controls the appearance of the navigation
panel in the Virtual Reality Toolbox viewer. For example, setting

this value to 'translucent' causes the navigation panel to appear
translucent.

DefaultViewer — Determines whether the virtual scene appears in the
Virtual Reality Toolbox viewer or in your Web browser. If the preference
is set to 'internal’, the Virtual Reality Toolbox viewer is the default
viewer. If it is set to 'web', the default Web browser with the VRML
plug-in is the default viewer.

Editor — Contains a path to the VRML editor executable file. When
you use the edit command, the Virtual Reality Toolbox runs the VRML
editor executable with all parameters required to edit the VRML file.

When you run the editor, the Virtual Reality Toolbox uses the Editor
preference value as if you typed it into a command line. The following
tokens are interpreted:

%matlabroot Refers to the MATLAB root directory
%file Refers to the VRML filename

11-31

vrgetpref

For instance, a possible value for the Editor preference is

‘%matlabroot\bin\win32\meditor.exe %file'

If this preference is empty, the MATLAB editor is used.

HttpPort -- Specifies the network port to be used for Web access. The
port is given in the Web URL as follows:

http://server.name:port_number

The default value of this preference is 8123.

TransportBuffer — Defines the size of the message window for
client-server communication. This value determines how many
messages, at a maximum, can travel between the client and the server
at one time.

Generally, higher values for this preference make the animation run
more smoothly, but with longer reaction times. (More messages in the
line create a buffer that compensates for the unbalanced delays of the
network transfer.)

The default value is 5, which is optimal for most purposes. You should
change this value only if the animation is significantly distorted or the
reaction times are very slow. On fast connections, where delays are
introduced more by the client rendering speed, this value has very little
effect. Viewing on a host computer is equivalent to an extremely fast
connection. On slow connections, the correct value can improve the
rendering speed significantly but, of course, the absolute maximum is
determined by the maximum connection throughput.

VrPort — Specifies the network port to use for communication between
the Virtual Reality Toolbox server (host computer) and its clients (client
computers). Normally, this communication is completely invisible to the
user. However, if you view a virtual world from a client computer, you
might need to configure the security network system (firewall) so that
it allows connections on this port. The default value of this preference
is 8124.

11-32

vrgetpref
|

See Also vrsetpref

11-33

vrinstall

Purpose Install and check Virtual Reality Toolbox components

Syntax vrinstall('action')
vrinstall action
vrinstall('action', 'component')
vrinstall action component
X = vrinstall('action', 'component')

Arguments action

Type of action for this function. Values are
-interactive, -selftest, -check, -install, and
-uninstall.

component Name of the component for the action. Values are
viewer and editor.
Description You use this function to manage the installation of optional software

components related to the Virtual Reality Toolbox. Currently there are

two such components: VRML plug-in and VRML editor.

Action Value

Description

-selftest

If this function reports an error, you should

other actions.

-interactive

Checks for the installed components, and then
displays a list of uninstalled components you can
choose to install.

-check

Checks the installation of optional components.
If the given component is installed, returns 1. If

you do not specify a component, displays a list of
components and their status.

11-34

Checks the integrity of the Virtual Reality Toolbox.

reinstall the Virtual Reality Toolbox. The function
vrinstall automatically does a self-test with any

the given component is not installed, returns 0. If

vrinstall

Action Value

Description

-install

Installs optional components. This action
requires you to specify the component name. All
components can be installed using this command,
but some of them (currently only the plug-in)
need to be uninstalled using the system standard
uninstallation procedure.

-uninstall

Uninstalls optional components. This option is
currently available for the editor only. Note that
this action does not remove the files for the editor
from the installation directory. It removes the
editor registry information.

If you want to uninstall the VRML plug-in, exit
MATLAB and, from the Control Panel window,
select Add/Remove Programs.

Examples Install the VRML plug-in. This command starts the blaxxun Contact
install program and installs the plug-in to your default Web browser.

vrinstall -install viewer

Install the VRML editor. This command associates V-Realm Builder
with the Edit button in the Block Parameters dialog boxes.

vrinstall -install editor

11-35

vrlib

Purpose
Syntax

Description

11-36

Open Simulink block library for Virtual Reality Toolbox
vrlib

The Simulink library for the Virtual Reality Toolbox has five blocks:
VR Sink, VR Placeholder, VR Signal Expander, Joystick Input, and
Magellan Space Mouse.

Alternatively, you can access these blocks from a Simulink block
diagram. In the Simulink window, from the View menu, click Show
Library Browser.

vrnode

Purpose

Syntax

Arguments

Description

Create node or handle to existing node

mynode = vrnode
mynode = vrnode
mynode = vrnode
mynode = vrnode
mynode = vrnode
‘node_type")

[1)

vrworld_object, 'node_name')
vrworld_object, 'node_name', 'node_type')
parent_node, 'parent_field', 'node_name',

—_—~ e~~~

vrworld object Name of a vrworld object representing a virtual

world.
node_name Name of the node.
node_type Type of the node.
parent_node Name of the parent node that is a vrnode object.
parent_field Name of the field of the parent node.

mynode = vrnode creates an empty vrnode handle that does not
reference any node.

mynode = vrnode([]) creates an empty array of vrnode handles.

mynode = vrnode(vrworld_object, 'node_name') creates a handle to
an existing named node in the virtual world.

mynode = vrnode(vrworld object, 'node_name', 'node_type')
creates a new node called node_name of type node_type on the root of
the virtual world. It returns the handle to the newly created node.

mynode = vrnode(parent_node, 'parent_field',

'node_name', 'node_type') creates a new node called

node_name of type node_type that is a child of the parent_node and
resides in the field parent_field. It returns the handle to the newly
created node.

A vrnode object identifies a virtual world node in a way very similar
to a handle. If the vrnode method is applied to a node that does not

11-37

vrnode

exist, the node is created, the vrnode object is created, and the handle
to the vrnode object is returned. If the vrnode method is applied to
an existing node, the handle to the vrnode object associated with this
node is returned.

See Also vrnode/delete, vrnode/get, vrnode/getfield, vrnode/set,
vrnode/setfield, vrworld

11-38

vrnode/delete

Purpose

Syntax

Arguments

Description

See Also

Remove vrnode object

delete(vrnode_object)
delete(n)

vrnode _object Name of a vrnode object.

delete(vrnode_object) deletes the virtual world node.

delete(n) deletes the vrnode object referenced by the vrnode handle n.
If n is a vector of vrnode handles, multiple nodes are deleted.

As soon as a node is deleted, it and all its child objects are removed from
all clients connected to the virtual world.

vrworld/delete

11-39

vrnode/fields

Purpose

Syntax
Arguments

Description

See Also

11-40

VRML field summary of node object

fields(vrnode_object)
x = fields(vrnode_object)

vrnode_object Name of a vrnode object representing the node
to be queried.

fields(vrnode_object) displays a list of VRML fields of the node
associated with the vrnode object in the MATLAB Command Window.

x = fields(vrnode_object) returns the VRML fields of the node
associated with the vrnode object in a structure array. The resulting
structure contains a field for every VRML field with the following
subfields:

® Type is the name of the VRML field type, for example, 'MFString',
‘SFColor'.

® Access is the accessibility description of the VRML data class, for
example, 'eventIn', 'exposedField’.

® Sync is the synchronization status 'on' or 'off'. See also
vrnode/sync.

vrnode/get, vrnode/set

vrnode/get

Purpose Property value of vrnode object

Syntax get(vrnode_object)
x = get(vrnode_object)
x = get(vrnode_object, 'property name')

Arguments vrnode_object Name of a vrnode object representing the node to
be queried.

property _name Name of the property to be read.

Description get(vrnode object) lists all vrnode properties in the MATLAB
Command Window.

x = get(vrnode_object), where vrnode_object is a scalar, returns
a structure where each field name is the name of a property and each
field contains the value of that property.

x = get(vrnode object, 'property name') returns the value of given
property.

If vrnode_object is a vector of vrnode handles, get returns an M-by-1
cell array of values, where M is equal to 1length(vrnode object).

The vrnode property values are case sensitive. Property names are not
case sensitive.

The vrnode object properties allow you to control the behavior and
appearance of objects. The vrnode objects have the following properties.
All these properties are read only.

Property | Value Description

Fields Cell Valid field names for the VRML node.
array

Name String Name of the node.

11-41

vrnode/get

Property | Value Description

Type String VRML type of the node. The value is
a string (for example, 'Transform',
'Shape').

World Handle Handle of the parent vrworld object. This
is a vrworld object that represents the
node’s parent world.

See Also vrnode, vrnode/getfield, vrnode/set, vrnode/setfield

11-42

vrnode/geffield

Purpose

Syntax

Arguments

Description

See Also

Field value of vrnode object

getfield(vrnode_object)
x = getfield(vrnode_object)
x = getfield(vrnode_object, 'fieldname')

vrnode_object Name of a vrnode object representing the node to
be queried.

fieldname Name of the vrnode object field whose values you
want to query.

getfield(vrnode_object) displays all the field names and their
current values for the respective VRML node.

x = getfield(vrnode object), where vrnode object is a scalar,
returns a structure where each field name is the name of a vrnode field
and each field contains the value of that field.

x = getfield(vrnode object,'fieldname') returns the value of
the specified field for the node referenced by the vrnode object
handle. If vrnode_object is a vector of vrnode handles, getfield
returns an M-by-1 cell array of values, where M is equal to
length(vrnode_object).

If 'fieldname' is a 1-by-N or N-by-1 cell array of strings containing
field names, getfield returns an M-by-N cell array of values.

Note The dot notation is the preferred method for accessing nodes.

vrnode, vrnode/get, vrnode/set, vrnode/setfield

11-43

vrnode/isvalid

Purpose

Syntax

Arguments

Description

See Also

11-44

Return 1 if vrnode object is valid, 0 if not

x = isvalid(vrnode_object_vector)

vrnode_object_vector Name of an array of vrnode objects to be
queried.

This method returns an array that contains 1 when the elements of

vrnode_object_vector are valid vrnode objects, and 0 when they are
not.

The vrnode object is considered valid if the following conditions are met:

¢ The parent world of the node exists.
¢ The parent world of the node is open.
¢ The VRML node with the given vrnode handle exists in the parent

world.

vrfigure/isvalid, vrworld/isvalid

vrnode/set

Purpose

Syntax

Arguments

Description

Change property of virtual world node

x = set(vrnode_object, 'property _name','property_value')

vrnode _object Name of a vrnode object representing a node in
the virtual world.

property_name Name of a property.

property_value Value of a property.

x = set(vrnode_object, 'property_name', 'property_value')
changes the specified property of the vrnode object to the specified
value.

The vrnode property values are case sensitive, while property names
are not case sensitive.

The vrnode property values are case sensitive, while property names
are not case sensitive.

The vrnode objects have the following properties. All these properties
are read only.

Property | Value Description

Fields Cell array | Valid field names for the VRML node. Read
only.

Name String Name of the node. Read only.

Type String VRML type of the node. The value is a string
(for example, 'Transform', 'Shape'). Read
only.

World Handle Handle of the parent vrworld object. This is
a vrworld object that represents the node’s
parent world. Read only.

Currently, VRML nodes have no settable properties.

11-45

vrnode/set

See Also vrnode, vrnode/get, vrnode/getfield, vrnode/setfield

11-46

vrnode/setfield

Purpose

Syntax

Arguments

Description

See Also

Change field value of vrnode object

x = setfield(vrnode_object, 'fieldname', 'fieldvalue')

vrnode_object Name of a vrnode object representing the node
to be changed.

fieldname Name of the vrnode object VRML field whose
values you want to set.

fieldvalue Value of fieldname.

x = setfield(vrnode object, 'fieldname', 'fieldvalue') changes
the specified field of the vrnode object to the specified value. You can
specify multiple field names and field values in one line of code by
grouping them in pairs. For example, x = setfield(vrnode object,
'fieldname1', 'fieldvaluel', 'fieldname2', 'fieldvalue2',...).

Note that VRML field names are case sensitive, while property names
are not.

Note The dot notation is the preferred method for accessing nodes.

vrnode, vrnode/get, vrnode/getfield, vrnode/set

11-47

vrnode/sync

Purpose Enable or disable synchronization of VRML fields with client

Syntax sync(vrnode_object, 'field_name', 'action')

Arguments vrnode _object Name of a vrnode object representing the node.
field_name Name of the VRML field to be synchronized.
action The action parameter determines what should

be done:

e 'on' enables synchronization of this field.

e 'off' disables synchronization of this field.

Description The sync method controls whether the value of a VRML field is
synchronized.

When the field is marked 'on', the field value is updated every time it
is changed on the client computer. If the field is marked 'off', the host
computer ignores the changes on the client computer.

Synchronized fields add more traffic to the network line because the
value of the field must be resent by the client any time it is changed.
Because of this, you should mark for synchronization only the fields you
need to scan for changes made on clients (typically sensors). By default,

fields are not synchronized and their values reflect only settings from
MATLAB or Simulink.

Synchronization is meaningful only for readable fields. Readable fields
are of VRML data class eventOut and exposedField. You cannot
enable synchronization for eventIn or nonexposed fields.

See Also vrnode, vrnode/get

11-48

vrplay

Purpose

Syntax

Description

Play VRML animation file

vrplay
vrplay(filename)
x=vrplay(filename)

vrplay opens the Virtual Reality animation player GUI that allows
you to open and play VRML animation files.

vrplay(filename) opens the Virtual Reality animation player GUI
and loads the virtual world filename.

x=vrplay(filename) also returns a Virtual Reality animation player
GUI figure handle.

vrplay works only with VRML animation files created using the Virtual
Reality Toolbox VRML recording functionality.

stop

la
step reverse oy

step forward
fast forward

first last— B% Joop

EAX mmm...;/ ~icix

File \lavt\ack \Help a
o

\ I /

E”v||4« a4 8 DM >||_qe;>
< / g

Start tirme: 0 Current time: o Stop tirme:
Stopped

/

time indicator

rewind

[}

11-49

vrplay

Keyboard The GUTI’s playback controls can also be accessed from the keyboard.
Support

Key Function

f fast forward

jump to time

—.

1 loop
p play
S stop
r rewind

right arrow key | step forward

left arrow key step reverse

up arrow key first

down arrow key | last

Example To play the animation file based on the vr_octavia demo, run
vrplay('octavia_scene_anim.wrl').

See Also “Recording Offline Animations” on page 4-9, vrview

11-50

vrsetpref

Purpose

Syntax

Arguments

Description

Change Virtual Reality Toolbox preferences

vrsetpref ('preference_name', 'preference value')
vrsetpref('factory')

preference_name Name of the preference.

preference_value New value of the preference.

This function sets the given Virtual Reality Toolbox preference to a

given value. The following preferences are defined. For preferences that
begin with the string DefaultFigure or DefaultWorld, these values are
the default values for the corresponding vrfigure or vrworld property:

Preference Description

DataTypeBool Specifies the handling of the VRML
Bool data type for vrnode/setfield
and vrnode/getfield. Valid values
are 'logical' and 'char'. If set to
'logical', the VRML Bool data type
is returned as a logical value. If set to
‘char', the Bool data type is returned
‘on' or 'off'. Defaultis 'logical'.

DataTypeInt32 Specifies handling of the VRML Int32
data type for vrnode/setfield and
vrnode/getfield. Valid values are
'int32' and 'double'. If set to
'int32', the VRML Int32 data type is
returned as int32. If set to 'double’,
the Int32 data type is returned as
"double'. Default is 'double’.

11-51

vrsetpref

Preference Description

DataTypeFloat Specifies the handling of the VRML
float data type for vrnode/setfield
and vrnode/getfield. Valid values
are 'single' and 'double’. If set to
'single', the VRML Float and Color
data types are returned as 'single'. If
set to 'double', the Float and Color
data types are returned as 'double’.
Default is 'double’.

DefaultFigureAnti Determines whether antialiasing is used
Aliasing by default for new vrfigure objects.
Valid values are 'off' and 'on'.

DefaultFigureDeleteFcn | Specifies the default callback invoked
when closing a vrfigure object.

DefaultFigureLighting Specifies whether the lights are
rendered by default for new vrfigure
objects. Valid values are 'off' and

‘on'.
DefaultFigureMax Specifies the default maximum size of a
TextureSize texture used in rendering new vrfigure

objects. Valid values are 'auto' and
32 <= x <= video card limit, where x is a
power of 2.

DefaultFigureNavPanel Specifies the default appearance of the
control panel in the viewer. Valid values
are 'opaque', 'translucent’', 'none’,
"halfbar', 'bar', and 'factory"'.
Default is 'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone
is on or off by default for new vrfigure
objects. Valid values are 'off' and
‘on'.

11-52

vrsetpref

Preference

Description

DefaultFigurePosition

Sets the default initial position and size
of the Virtual Reality Toolbox viewer
window. Valid value is a vector of four
doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression
method for creating 2-D animation
files for new vrfigure objects. Valid
values are '', 'auto', 'lossless', and
‘codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D
animation file compression for new
vrfigure objects. Valid values are
0-100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline
animation filename for new vrfigure
objects.

DefaultFigureRecord2DFPS

Specifies the default frames per second
playback speed.

DefaultFigureStatusBar

Specifies whether the status bar
appears by default at the bottom of
the Virtual Reality Toolbox viewer for
new vrfigure objects. Valid values are
‘off' and 'on'.

DefaultFigureToolBar Specifies whether the toolbar appears
by default on the Virtual Reality Toolbox
viewer for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigure Specifies whether or not transparency

Transparency information is taken into account when

rendering for new vrfigure objects.
Valid values are 'off' and 'on'.

11-53

vrsetpref

11-54

Preference

Description

DefaultFigureWireframe

Specifies whether objects are drawn
as solids or wireframes by default for
new vrfigure objects. Valid values are
'off' and 'on'.

DefaultViewer

Specifies which viewer is used to
view a virtual scene. The Virtual
Reality Toolbox viewer is used when
the preference is set to 'internal’.
The Web browser is used when this
preference is set to 'web'. Default is
"internal’.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation
filename for new vrworld objects.

DefaultWorldRecordMode

Specifies the default animation
recording mode for new vrworld
objects. Valid values are 'manual' and
‘scheduled’.

DefaultWorldRecord
Interval

Specifies the default start and stop
times for scheduled animation recording
for new vrworld objects. Valid value is
a vector of two doubles.

DefaultWorldRemoteView

Specifies whether the virtual world is
enabled by default for remote viewing
for new vrworld objects. Valid values
are 'off' and 'on'.

DefaultWorldTimeSource

Specifies the default source of the time
for new vrworld objects. Valid values
are 'external' and 'freerun'.

Editor

Path to the VRML editor. If this path is
empty, the MATLAB editor is used.

vrsetpref

See Also

Preference

Description

HttpPort

IP port number used to access the VR
server over the Web via HTTP. If you
change this preference, you must restart
MATILAB before the change takes effect.

TransportBuffer

Length of the transport buffer (network
packet overlay) for communication
between the VR server and its clients.

TransportTimeout

Amount of time the VR Toolbox server
waits for a reply from the client. If there
is no response from the client, the VR
Toolbox server disconnects from the
client.

VrPort

IP port used for communication between
the VR server and its clients. If you

change this preference, you must restart
MATILAB before the change takes effect.

Changes to the HttpPort or VrPort preferences take effect only after

you restart MATLAB.

When you use 'factory' as a single argument, all preferences are
reset to their default values. If you use 'factory' for a preference
value, that single preference is reset to its default.

vrgetpref

11-55

vrview

Purpose

Syntax

Description

See Also

11-56

View virtual world using Virtual Reality Toolbox viewer or Web browser

vrview

X = vrview('filename')

X = vrview('filename','-internal')
X = vrview('filename','-web")

vrview opens the default Web browser and loads the Virtual Reality
Toolbox Web page containing a list of virtual worlds available for
viewing.

x = vrview('filename') creates a virtual world associated with the
.wrl file, opens the virtual world, and displays it in the Virtual Reality
Toolbox viewer or the Web browser depending on the value of the
DefaultViewer preference. The handle to the virtual world is returned.

X = vrview('filename','-internal') creates a virtual world
associated with the .wrl file, opens the virtual world, and displays it in
the Virtual Reality Toolbox viewer.

X = vrview('filename', '-web') creates a virtual world associated
with the .wrl file, opens the virtual world, and displays it in your Web
browser.

vrplay, vrworld, vrworld/open, vrworld/view

vrwho

Purpose List virtual worlds in memory
Syntax vrwho
X = vrwho
Description If you do not specify an output parameter, vrwho displays a list of

virtual worlds in memory in the MATLAB Command Window.

If you specify an output parameter, vrwho returns a vector of handles to
existing vrworld objects, including those opened from Simulink.

See Also vrclear, vrwhos, vrworld

11-57

vrwhos

Purpose List details about virtual worlds in memory
Syntax vrwhos
Description vrwhos displays a list of virtual worlds currently in memory, with a

description, in the MATLAB Command Window. The relation between
vrwho and vrwhos is similar to the relation between who and whos.

See Also vrclear, vrwho

11-58

vrworld

Purpose

Syntax

Arguments

Description

Examples

See Also

Create new vrworld object associated with virtual world

myworld = vrworld('filename')
myworld vrworld
myworld = vrworld([])

filename String containing the name of the VRML file from
which the virtual world is loaded. If no file extension
is specified, the file extension .wrl is assumed.

myworld = vrworld('filename') creates a virtual world associated
with the VRML file filename and returns its handle. If the virtual
world already exists, a handle to the existing virtual world is returned.

myworld = vrworld creates an empty vrworld handle that does not
refer to any virtual world.

myworld = vrworld([]) returns an empty array of vrworld handles.

A vrworld object identifies a virtual world in a way very similar to a
handle. All functions that affect virtual worlds accept a vrworld object
as an argument to identify the virtual world.

If the given virtual world already exists in memory, the handle to the
existing virtual world is returned. A second virtual world is not loaded
into memory. If the virtual world does not exist in memory, it is loaded
from the associated VRML file. The newly loaded virtual world is closed
and must be opened before you can use it.

The vrworld object associated with a virtual world remains valid until
you use either delete or vrclear.

myworld = vrworld('vrpend.wrl')

vrworld/close, vrworld/delete, vrworld/open

11-59

vrworld/close

Purpose Close virtual world

Syntax close(vrworld object)

Arguments vrworld_object A vrworld object representing the virtual world.
Description This method changes the virtual world from an opened to a closed state:

¢ Ifthe world was opened more than once, you must use an appropriate
number of close calls before the virtual world closes.

e If vrworld object is a vector of vrworld objects, all associated
virtual worlds close.

e If the virtual world is already closed, close does nothing.

Opening and closing virtual worlds is a mechanism of memory
management. When the system needs more memory and the virtual
world is closed, you can discard its contents at any time.

Generally, you should close a virtual world when you no longer need it.
This allows you to reuse the memory it occupied. The vrworld objects
associated with this virtual world stay valid after it is closed, so the
virtual world can be opened again without creating a new vrworld

object.
Examples myworld = vrworld('vrpend.wrl')
open(myworld)
close(myworld)
See Also vrworld, vrworld/delete, vrworld/open

11-60

vrworld/delete

Purpose

Syntax
Arguments

Description

See Also

Remove virtual world from memory

delete(vrworld_object)

vrworld object A vrworld object representing a virtual world.

The delete method removes from memory the virtual world associated
with a vrworld object. The virtual world must be closed before you
can delete it.

Deleting a virtual world frees the virtual world from memory and
invalidates all existing vrworld objects associated with the virtual
world.

If vrworld_object is a vector of vrworld objects, all associated virtual
worlds are deleted.

You do not commonly use this method. One of the possible reasons to
use this method is to ensure that a large virtual world is removed from
memory before another memory-consuming operation starts.

vrclear, vrworld/close

11-61

vrworld/edit

Purpose Open virtual world file in external VRML editor
Syntax edit(vrworld_object)
Arguments vrworld object A vrworld object representing a virtual world.

Description The edit method opens the VRML file associated with the vrworld
object in a VRML editor. The Editor preference specifies the VRML
editor to use. See vrsetpref for details on setting preferences.

The VRML editor saves any changes you make directly to a virtual

world file. If the virtual world is open,

¢ Use the save command in the VRML editor to save the changes to a
virtual world file. In MATLAB, the changes appear after you reload
the virtual world.

¢ Use the save method in MATLAB to replace the modified VRML file.
Any changes you made in the editor are lost.

See Also vrworld/reload, vrworld/save

11-62

vrworld/get

Purpose Property value of vrworld object

Syntax get(vrworld object)
x = get(vrworld_object)
x = get(vrworld_object, 'property name')

Arguments vrworld_object A vrworld object representing a virtual world.
property_name Name of the property.

Description get(vrworld object) displays all the virtual world properties and
their values.

x = get(vrworld object) returns an M-by-1 structure where the field
names are the names of the virtual world properties. Each field contains
the associated property value. M is equal to length(vrworld object).

x = get(vrworld object, 'property name') returns the value of
the specified property.

e Ifvrworld object is a vector of vrworld handles, the get method
returns an M-by-1 cell array of values where M is equal to
length(vrworld_object).

e Ifproperty name is a 1-by-N or N-by-1 cell array of strings containing
field names, the get method returns an M-by-N cell array of values.

The following are properties of vrworld objects. Names are not case

sensitive.
Property Value Description
Clients Scalar Number of clients currently viewing
the virtual world. Read only.

11-63

vrworld/get

Property Value Description

ClientUpdates ‘off' | 'on' Client cannot or can update the virtual
Default: on’ scene. Read/write.

Description String. Description of the virtual world as
Default: automatically lfgezl()il/)\?vjli«tseon b sz, VD R,
taken from the VRML file)
property title

Figures Vector of vrfigure objects | Vector of handles to Virtual Reality

Toolbox viewer windows currently
viewing the virtual world. Read only.

FileName String Name of the associated VRML file.

Read only.

Nodes Vector of vrnode objects Vector of vrnode objects for all named

nodes in the virtual world. Read only.

Open ‘off' | 'on' Indicates a closed or open virtual
Default: ' off" world. Read only.

Record3D ‘off' | 'on' Enables 3-D animation recording.
Default: 'off! feac i)

Record3DFileName | String. 3-D animation filename. The string
Default: can contain tokens that are replaced by
\ ; , the corresponding information when

%f_anim_%n.wrl . . .
- - the animation recording takes place.
For details, see “Animation Recording
File Tokens” on page 4-10. Read/write.
Recording ‘off' | 'on' Animation recording toggle. This
L , property acts as the master recording
WETHE el switch. Read/write.
RecordMode ‘manual' | 'scheduled' | Animation recording mode.

Default: 'manual'’

Read/write.

11-64

vrworld/get

Property Value Description
RecordInterval Vector of two doubles Start and stop times for scheduled
. animation recording. Corresponds to
Liafa i T2] the virtual world object Time property.
Read/write.
RemoteView 'off' | 'on' Remote access flag. If the virtual world
o . is enabled for remote viewing, it is set
Disitaellss * o to 'on'; otherwise, it is set to 'off'.
Read/write.
Time Double Current time in the virtual world.
Read/write.
TimeSource ‘external' | 'freerun' | Source of the time for the virtual
Default: 'external’ world. If set to 'external’, time in the
) scene is controlled from MATLAB (by
setting the Time property) or Simulink
(simulation time).
If set to 'freerun', time in the scene
advances independently based on the
system timer. Read/write.
View ‘off' | 'on' Indicates an unviewable or viewable
Default: on’ virtual world. Read/write.

The ClientUpdates property is set to 'on' by default and can be

set by the user. When it is set to 'off"', the viewers looking at this
virtual world should not update the view according to the virtual world
changes. That is, the view is frozen until this property is changed

to 'on'. This is useful for preventing tearing effects with complex
animations. Before every animation frame, set ClientUpdates to
'off', make the appropriate modifications to the object positions, and
then switch ClientUpdates back to 'on'.

The Description property defaults to ' (untitled)' and can be set by
the user. If the virtual world is loaded from a VRML file containing a

11-65

vrworld/get

See Also

11-66

WorldInfo node with a title property, the Description property is
loaded from the VRML file instead.

The Nodes property is valid only when the virtual world is open. If the
virtual world is closed, Nodes always contains an empty vector.

The RemoteView property is set to 'off' by default and can be set by the
user. Ifit is set to 'on"', all viewers can access the virtual world through
the Web interface. If it is set to 'off', only host viewers can access it.

The View property is set to 'on' by default and can be set by the user.
When it is set to 'off ', the virtual world is not accessible by the viewer.
You rarely use this property.

vrworld, vrworld/set

vrworld/isvalid

Purpose

Syntax
Arguments

Description

See Also

1 if vrworld object is valid, 0 if not

x = isvalid(vrworld_object)

vrworld object A vrworld object representing a virtual world.

A vrworld object is considered valid if its associated virtual world
still exists.

X = isvalid(vrworld object) returns an array that contains a 1
when the elements of vrworld object are valid vrworld objects, and
returns a 0 when they are not.

You use this method to check whether the vrworld object is still valid.
Using a delete or vrclear command can make a vrworld object invalid.

vrfigure/isvalid, vrnode/isvalid

11-67

vrworld/nodes

Purpose

Syntax

Arguments

Description

See Also

11-68

List nodes available in virtual world

nodes(vrworld_object, '-full')
X = nodes(vrworld_object, '-full')

vrworld_object A vrworld object representing a virtual world.

"-full' Switch to obtain a detailed list of nodes and fields.

If you give an output argument, the method nodes returns a cell array
of the names of all available nodes in the world. If you do not give an
output argument, the list of nodes is displayed in the MATLAB window.

You can use the '-full' switch to obtain a detailed list that contains
not only the nodes, but also all their fields. This switch affects only the
output to the MATLAB Command Window.

The virtual world must be open for you to use this method.

vrworld, vrworld/open

vrworld/open

Purpose

Syntax
Arguments

Description

Examples

See Also

Open virtual world

open(vrworld_object)

vrworld_object A vrworld object representing a virtual world.

The open method opens the virtual world. When the virtual world is
opened for the first time, the virtual world internal representation is
created based on the associated VRML file.

If the input argument is an array of virtual world handles, all the
virtual worlds associated with those handles are opened.

The virtual world must be open for you to use it. You can close the
virtual world with the method close.

You can call the method open more than once, but you must use an
appropriate number of close calls before the virtual world returns to
a closed state.

Create two vrworld objects by typing

myworldi = vrworld('vrmount.wrl')
myworld2 vrworld('vrpend.wrl')

Next, create an array of virtual world handles by typing

myworlds = [myworldl myworld2];

open (myworlds) opens both of these virtual worlds.

vrworld, vrworld/close

11-69

vrworld/reload

Purpose

Syntax
Arguments

Description

See Also

11-70

Reload virtual world from VRML file

reload(vrworld_object)

vrworld_object A vrworld object representing a virtual world.

The reload method reloads the virtual world from the VRML file
associated with the vrworld object. If the input argument is an array
of virtual world handles, all the virtual worlds associated with those
handles are reloaded. The virtual world must be open for you to use
this method.

reload forces all the clients currently viewing the virtual world to
reload it. This is useful when there are changes to the VRML file.

vrworld/edit, vrworld/open, vrworld/save

vrworld/save

Purpose

Syntax

Arguments

Description

See Also

Write virtual world to VRML file

save(vrworld_object, 'vrml_file')

vrworld_object A vrworld object representing a virtual world.

vrml_file Name of the VRML file to save the virtual world to.

The save method saves the current virtual world to a VRML97 file. The
virtual world must be open for you to use this method.

The resulting file is a VRML97 compliant UTF-8 encoded text file.
Lines are indented using spaces. Line ends are encoded as CR-LF or LF
according to the local system default. Values are separated by spaces.

vrworld/edit, vrworld/open, vrworld/reload

11-71

vrworld/set

Purpose Change property values of vrworld object

Syntax set(vrworld_object, 'property name', property value)

Arguments vrworld_object Name of a vrworld object representing a virtual

world.
property name Name of the property.
property value New value of the property.

Description You can change the values of the read/write virtual world properties.
The following are properties of vrworld objects. Names are not case
sensitive.

Property Value Description
Clients Scalar Number of clients currently viewing
the virtual world. Read only.
ClientUpdates 'off' | 'on' Client cannot or can update the
L virtual scene. Read/write.
Default: 'on
Description String. Description of the virtual world as
Default: automatically gez%%;ﬁeon (s e, el ese.
taken from the VRML file ’
property title
Figures Vector of vrfigure objects | Vector of handles to Virtual Reality
Toolbox viewer windows currently
viewing the virtual world. Read only.
FileName String Name of the associated VRML file.

Read only.

11-72

vrworld/set

Property Value Description
Nodes Vector of vrnode objects Vector of vrnode objects for all
named nodes in the virtual world.
Read only.
Open 'off' | 'on' Indicates a closed or open virtual
Default: 'off " world. Read only.
Record3D ‘off' | 'on' Enables 3-D animation recording.
Default: 'off' Rt Eets
Record3DFileName String. 3-D animation filename. The string
Default: can contain tokens that are replaced
‘ot anim %n.wrl® by the corresponding information
o= = when the animation recording takes
place. For details, see “Animation
Recording File Tokens” on page 4-10.
Read/write.
Recording ‘off' | 'on' Animation recording toggle. This
o , property acts as the master recording
Deta switch. Read/write.
RecordMode 'manual' | 'scheduled' | Animation recording mode.
Default: 'manual’ LT,
RecordInterval Vector of two doubles Start and stop times for scheduled
. animation recording. Corresponds
Disizeiells [0 O] to the virtual world object Time
property. Read/write.
RemoteView ‘off' | 'on' Remote access flag. If the virtual
Default: 'off" world is enabled for remote viewing,
’ it is set to 'on'; otherwise, it is set
to 'off'. Read/write.
Time Double Current time in the virtual world.

Read/write.

11-73

vrworld/set

Property Value Description
TimeSource ‘external' | 'freerun' | Source of the time for the virtual
Default: 'external’ world. If set to 'external’, time
’ in the scene is controlled from
MATLAB (by setting the Time
property) or Simulink (simulation
time).
If set to 'freerun', time in the scene
advances independently based on
the system timer. Read/write.
View ‘off' | 'on' Indicates an unviewable or viewable
Default: 'on' virtual world. Read/write.
See Also vrworld, vrworld/get

11-74

vrworld/view

Purpose

Syntax

Arguments

Description

Examples

See Also

View virtual world

view(vrworld_object)

X = view(vrworld_object)

X = view(vrworld_object,'-internal')
X = view(vrworld_object,'-web')

vrworld_object A vrworld object representing a virtual world.

The view method opens the default VRML viewer on the host computer
and loads the virtual world associated with the vrworld object into
the viewer window. You specify the default VRML viewer using the
DefaultViewer preference. The virtual world must be open for you

to use this method.

x = view(vrworld_object) opens the default VRML viewer on the host
computer and loads the virtual world associated with the vrworld object
into the viewer window. If the Virtual Reality Toolbox viewer is used,
view also returns the vrfigure handle of the viewer window. If a Web
browser is used, view returns an empty array of vrfigure handles.

x = view(vrworld object,-internal’) opens the virtual world in the
Virtual Reality Toolbox viewer.

x = view(vrworld object,-web’) opens the virtual world in the Web
browser.

If the virtual world is disabled for viewing (that is, the View property
for the associated vrworld object is set to 'off'), the view method does
nothing.

myworld = vrworld('vrpend.wrl')
open(myworld)

view(myworld)

vrview, vrworld

11-75

Glossary

simulation
The process of running a dynamic system in nonreal time to observe
its behavior.

virtual figure object
A handle to a Virtual Reality Toolbox viewer window.

virtual node object
A handle to a node in a virtual world that allows access to the node’s
properties.

Virtual Readlity Modeling Language
The specification for displaying three-dimensional objects using a
VRML viewer.

virtual world
An imaginary world where you can navigate around objects in three
dimensions.

virtual world object
A handle to a virtual world that allows you to interact with and control
the world.

VRML
Virtual Reality Modeling Language. See “VRML Overview” on page
1-10.

Glossary-1

2-D AVI files
recording through MATLAB interface 4-9
recording through Virtual Reality Toolbox
viewer 6-22
3-D VRML files
recording with MATLAB interface 4-9
recording with Virtual Reality Toolbox
viewer 6-22

A

adding Virtual Reality Toolbox blocks 3-2
animation files
recording with MATLAB interface 4-9
recording with Virtual Reality Toolbox
viewer 6-22

associating virtual worlds with Simulink
blocks 3-9

bitmap file formats 1-27
blaxxun Contact
creating virtual worlds 5-8
installing 2-20
known issue 2-22
VRML viewer 6-47
bmp file formats 1-27
bouncing ball
Simulink example 1-17

C

capturing frames 6-17
car
MATLAB interface example 1-23
changing virtual world associated with
Simulink block 3-9
client computer
installation of VRML viewer
(Windows) 2-50

system requirements 2-10
closing virtual worlds 4-8
components

client computer 2-50

host computer 2-12
connecting Simulink model to a virtual

world 5-17
coordinate system

MATLAB 1-11

VRML 1-11
creating vrworld object 4-2
Cross Product

Simulink block 9-2

D

default editor
setting 2-30

default viewer
setting 2-24

deformation of a sphere example
adding Virtual Reality Toolbox blocks 5-6
connecting Simulink to a virtual

world 5-17

creating a box in a virtual world 5-13
creating a sphere in a virtual world 5-8
defining the problem 5-5

deleting virtual worlds 4-8

displaying virtual worlds 3-11

editors

general 3-D 5-2

native VRML 5-2

uninstalling 2-48
examples

bouncing ball 1-17

car 1-23

deformation of a sphere 5-5

Index-1

Index

heat transfer 1-23
inverted pendulum 1-21
lighting 1-18

magnetic levitation 1-19

magnetic levitation for Real-Time Windows

Target 1-19

manipulator with SpaceMouse 1-20

MATLAB interface 1-16
plane taking off 1-22
rotating membrane 1-25
Simulink interface 1-16
solar system 1-22

using MATLAB interface 1-23

F

file format
VRML 1-12
files
textures 1-27
frame captures
configuring 6-20
creating 6-20
introduction 6-17
frames
capture actions 6-21
capturing 6-17
configuring captures 6-20
creating captures 6-20
functions
MATLAB interface 10-1
vrclear 11-2
vrgetpref 11-26
vrinstall 11-34
vrlib 11-36
vrplay 10-1 11-49
vrsetpref 10-1 11-51
vrview 10-2 11-56
vrwho 11-57
vrwhos 10-2 11-58

Index-2

H

heat transfer
MATLAB example 1-23

history
VRML 1-10

host computer
installing Virtual Reality Toolbox 2-12
installing VRML editor (Windows) 2-29
installing VRML viewer (UNIX) 2-23
installing VRML viewer (Windows) 2-20
required components 2-12
system requirements 2-8
Virtual Reality Toolbox viewer 2-19
VRML editor (UNIX) 2-30

installation
blaxxun Contact 2-20
client computer 2-50
components
host computer 2-12
host computer 2-12
supported platforms 2-7
system requirements 2-7
testing 2-51
viewer on host computer 2-19
Virtual Reality Toolbox 2-12
VRML editor (UNIX) 2-30
VRML editor (Windows) 2-29
VRML viewer (UNIX) 2-23
VRML viewer (Windows) 2-20
interacting with a virtual world 4-5
interface overview 3-2
inverted pendulum
Simulink example 1-21

J
Joystick Input

Index

Simulink block 9-3

L

lighting
Simulink example 1-18

M

Magellan SpaceMouse
Simulink block 9-6
magnetic levitation
Simulink example 1-19
Simulink example for Real-Time Windows
Target 1-19
manipulator with Space Mouse
Simulink example 1-20
MATLAB coordinate system 1-11
MATLAB interface
creating a vrworld object 4-2
examples 1-23
interacting with a virtual world 4-5
table of general functions 10-1

native VRML 5-2

navigation
about a virtual scene 6-10
example of navigation 6-14
keyboard 6-15
using the mouse 6-11

navigation speed
changing 6-13

network security setting 2-22
changing default 2-22
See also blaxxun Contact

Normalize Vector
Simulink block 9-10

o

opening a viewer window 3-13
Orbisnap 7-1

installation 7-3

interface 7-10

remote viewing 7-6

usage 7-5

viewing virtual worlds 7-6
overview

associating virtual worlds with

Simulink 3-2

Simulink interface 3-2

virtual worlds 5-2

VRML 1-10

VRML editing tools 5-2

P

plane taking off
Simulink example 1-22
platforms
supported 2-7
preferences 2-36
See also Virtual Reality Toolbox
preferences

rendering of a virtual scene 6-38
rotating membrane
Simulink example 1-21
Virtual Reality Toolbox example 1-25
Rotation Between 2 Vectors
Simulink block 9-11
Rotation Matrix to VRML Rotation
Simulink block 9-12
running Simulink example 2-51

Index-3

Index

S

security settings
changing 2-22
server
Virtual Reality Toolbox 1-28
setting
default editor 2-30
default viewer 2-24
simulation
displaying virtual worlds 3-11
starting 3-11
Simulink 3-2
associating with virtual worlds 3-2
interface examples 1-16
See also examples
Simulink blocks
adding Virtual Reality Toolbox blocks 3-2
changing virtual world association 3-9
Cross Product 9-2
Joystick Input 9-3
Normalize Vector 9-10
Rotation Between 2 Vectors 9-11
Rotation Matrix to VRML Rotation 9-12
Viewpoint Direction to VRML
Orientation 9-14
VR Placeholder 9-15
VR Signal Expander 9-16
VR Sink 9-18
VR Text Output 9-22
Simulink interface examples
bouncing ball 1-17
deformation of a sphere 5-6
inverted pendulum 1-21
lighting 1-18
magnetic levitation 1-19
magnetic levitation with Real-Time
Windows Target 1-19
manipulator with SpaceMouse 1-20
plane taking off 1-22
rotating membrane 1-21

Index-4

running and viewing 2-51

solar system 1-22

vehicle dynamics visualization 1-21
Simulink interface overview 3-2
solar system

Simulink example 1-22
SpaceMouse 9-6

Simulink examples 1-20

See also Magellan SpaceMouse
supported platforms 2-7
system requirements

client computer 2-10

host computer 2-8

T

testing
installation 2-51
MATLAB example 2-56
Simulink example 2-51
textures 1-27

U

uninstalling
editor 2-48
V-Realm Builder 2-48
Virtual Reality Toolbox 2-48
VRML viewer (Windows) 2-48

\"

V-Realm Builder
installing 2-29
uninstalling 2-48
VRML editor 5-4
vehicle visualization
Simulink example 1-21
view a virtual world
using a Web browser on the client
computer 3-18

Index

using a Web browser on the host
computer 3-14
viewer
installation on client computer 2-50
installation on host computer 2-19
opening 3-13
viewpoint control 6-31
Viewpoint Direction to VRML Orientation
Simulink block 9-14
Virtual Reality Toolbox
description 1-2
features 1-4
Virtual Reality Toolbox blocks
Cross Product 9-2
Joystick Input 9-3
Normalize Vector 9-10
Rotation Between 2 Vectors 9-11
Rotation Matrix to VRML Rotation 9-12
Viewpoint Direction to VRML
Orientation 9-14
VR Placeholder 9-15
VR Signal Expander 9-16
VR Sink 9-18
VR Text Output 9-22
Virtual Reality Toolbox examples
car 1-23
heat transfer 1-23
rotating membrane 1-25
running and viewing 2-56
Virtual Reality Toolbox preferences
MATLAB GUI 2-36
vrsetpref function 10-1 11-51
Virtual Reality Toolbox stand-alone viewer 7-1
See also Orbisnap
Virtual Reality Toolbox viewer
changing navigation speed 6-13
introduction 6-2
navigation 6-10
rendering 6-38
viewpoint control 6-31

virtual worlds
associating with Simulink 3-2
closing 4-8
deleting 4-8
displaying 3-11
interacting with 4-5
overview 5-2
VR Placeholder
Simulink block 9-15
VR Signal Expander
Simulink block 9-16
VR Sink
Simulink block 9-18
VR Text Output
Simulink block 9-22
vrclear
Virtual Reality Toolbox function 11-2
vrgetpref
Virtual Reality Toolbox function 11-26
vrinstall
Virtual Reality Toolbox function 11-34
vrlib
Virtual Reality Toolbox function 11-36
VRML
coordinate system 1-11
file format 1-12
history 1-10
overview 1-10
VRML editor
general 5-2
installing on host computer
(Windows) 2-29
on UNIX platforms 2-30
V-Realm Builder 5-4
VRML viewer
blaxxun Contact 6-47
changing navigation speed 6-13
installing on client computer
(Windows) 2-50
installing on host computer (UNIX) 2-23

Index-5

Index

installing on host computer
(Windows) 2-20
known issue (blaxxun Contact) 2-22
navigation 6-10
rendering 6-38
uninstalling 2-48
viewpoint control 6-31
Virtual Reality Toolbox 6-2
vrplay
Virtual Reality Toolbox function 10-1
11-49
vrsetpref
Virtual Reality Toolbox function 10-1
11-51
vrview
Virtual Reality Toolbox function 10-2
11-56

Index-6

vrwho
Virtual Reality Toolbox function 11-57
vrwhos
Virtual Reality Toolbox function 10-2
11-58
vrworld object
creation 4-2

w

Web browser
viewing a virtual world on a client
computer 3-18
viewing a virtual world on the host
computer 3-14

	toc
	Getting Started
	What Is the Virtual Reality Toolbox?
	Expected Background

	Features of the Virtual Reality Toolbox
	VRML Support
	MATLAB Interface
	Simulink Interface
	MATLAB Compiler Support
	VRML Viewers
	VRML Editor
	Real-Time Workshop Support
	Real-Time Windows Target

	SimMechanics Support
	Hardware Support
	Client-Server Architecture

	VRML Overview
	VRML History
	VRML Coordinate System
	VRML File Format

	Examples Using the Virtual Reality Toolbox
	Simulink Interface Examples
	Bouncing Ball Example (vrbounce)
	Portal Crane with Joystick Control (vrcrane_joystick)
	Portal Crane with Predefined Trajectory Example (vrcrane_traj)
	Lighting Example (vrlights)
	Magnetic Levitation Model Example (vrmaglev)
	Magnetic Levitation Model for Real-Time Windows Target Example (
	Manipulator with SpaceMouse Example (vrmanipul)
	Rotating Membrane Example (vrmemb1)
	Vehicle Dynamics Visualization (vr_octavia)
	Inverted Pendulum Example (vrpend)
	Solar System Example (vrplanets)
	Plane Takeoff Example (vrtkoff)

	MATLAB Interface Examples
	Car in the Mountains Example (vrcar)
	Heat Transfer Example (vrheat)
	Heat Transfer Visualization with 2-D Animation (vrheat_anim)
	Rotating Membrane with MATLAB GUI Example (vrmemb)

	Virtual Reality Toolbox Texture File
	Implementation Notes
	VRML Compatibility
	Virtual Reality Toolbox Server

	Installation
	Required Products
	MATLAB
	VRML Viewer

	Recommended Product
	Simulink

	Related Products
	System Requirements
	Supported Computer Platforms
	Host Computer
	Client Computer

	Installing the Virtual Reality Toolbox on the Host Computer
	Components on a Host Computer
	Installing from a CD (Windows)
	Installing from a CD (UNIX/Linux)
	LD_LIBRARY_PATH Environment Variable (UNIX)
	Known Issue with the Virtual Reality Toolbox and Microsoft Inter
	Editing the Java Library Path

	Installing the VRML Plug-In Viewer on the Host Computer
	Virtual Reality Toolbox Viewer
	Installing a VRML Plug-In (Windows)
	Known Issue with the blaxxun Contact Plug-In
	Changing the Default Network Security Setting

	Installing a VRML Plug-In (UNIX/Linux)
	Setting the Default Viewer of Virtual Scenes

	Installing the VRML Editor on the Host Computer
	Installing the VRML Editor (Windows)
	VRML Editor (UNIX/Linux)
	Setting the Default Editor of Virtual Scenes

	Changing Virtual Reality Toolbox Preferences with the MATLAB Pre
	Virtual Reality Toolbox Preferences
	Virtual Reality Toolbox Figure Preferences
	Virtual Reality Toolbox Figure Appearance Preferences
	Virtual Reality Toolbox Figure Rendering Preferences
	Virtual Reality Toolbox Figure 2-D Recording Preferences
	Virtual Reality Toolbox Figure Frame Capture Preferences

	Virtual Reality Toolbox World Preferences

	Removing Components (Windows)
	Removing the Virtual Reality Toolbox and V-Realm Builder (Window
	Removing the blaxxun Contact Plug-In (Windows)

	Installing on the Client Computer
	Installing a VRML Plug-In (Windows)

	Testing the Installation
	Running a Simulink Interface Example
	Running a MATLAB Interface Example

	Simulink Interface
	Associating a Virtual World with Simulink
	Adding a Virtual Reality Toolbox Block
	Changing the Virtual World Associated with a Simulink Block

	Using the Simulink Interface
	Displaying a Virtual World and Starting Simulation
	Opening a Viewer Window

	Viewing a Virtual World with a Web Browser on the Host Computer
	Viewing a Virtual World with a Web Browser on the Client Compute

	MATLAB Interface
	Using the MATLAB Interface
	Creating a vrworld Object
	Opening a Virtual World
	Interacting with a Virtual World
	Closing and Deleting a vrworld Object

	Recording Offline Animations
	Animation Recording File Tokens
	Manual 3-D VRML Animation Recording
	Manual 2-D AVI Animation Recording
	Scheduled 3-D VRML Animation Recording
	Scheduled 2-D AVI Animation Recording
	Viewing Animation Files
	Viewing VRML Files
	Other Methods for Viewing VRML Files
	Viewing AVI Files

	MATLAB Animation Recording of Virtual Worlds Not Associated with

	Virtual Worlds
	VRML Editing Tools
	Editors for Virtual Worlds
	V-Realm Builder

	Deformation of a Sphere Example
	Defining the Problem
	Adding a Virtual Reality Toolbox Block
	Creating a Sphere in a Virtual World
	Creating a Box in a Virtual World
	Connecting a Simulink Model to a Virtual World

	VRML Data Types
	VRML Field Data Types
	VRML Data Class Types
	eventIn
	eventOut
	field
	exposedField

	Viewing Virtual Worlds
	Virtual Reality Toolbox Viewer
	Menu Bar
	Toolbar
	Navigation Panel
	Starting and Stopping Simulations
	Navigation
	Changing the Navigation Speed
	Example of How Sensors Affect Mouse Navigation

	Frame Capture and Animation Recording File Tokens
	Creating Frame Captures
	Configuring Frame Capture Parameters
	Capturing a Frame

	Configuring Animation Recording Parameters
	Recording Files in the VRML Format
	Recording Files in the Audio Video Interleave (AVI) Format
	Scheduling Files for Recording
	Interactively Starting and Stopping Animation Recording
	Viewing the Animation File
	To View VRML Files
	To View AVI Files

	Working with Viewpoints
	Navigating through Viewpoints
	Resetting Viewpoints
	Creating Viewpoints

	Rendering

	blaxxun Contact VRML Plug-In
	Viewpoint Control
	Control Menu
	Navigation
	Movement Modes
	blaxxun Contact Settings				
	Stereoscopic Vision

	Virtual Reality Toolbox Stand-Alone Viewer
	What Is Orbisnap?
	Installing Orbisnap
	System Requirements
	Copying Orbisnap to Another Location
	Adding Shortcuts or Symbolic Links

	Using Orbisnap
	Viewing Prerecorded WRL Animations or Virtual Worlds
	Viewing the Virtual Reality Toolbox Server Virtual Worlds Remote

	Orbisnap Interface
	Menu Bar
	Toolbar
	Navigation Panel
	Navigation

	Orbisnap Command Line

	Blocks — By Category
	Control Input Devices
	Utilities
	Virtual Worlds
	VRML-Related Signals

	Blocks — Alphabetical List
	Functions — By Category
	MATLAB Interface Functions
	vrworld Object Methods
	vrnode Object Methods
	vrfigure Object Methods

	Functions — Alphabetical List
	Glossary
	Index

	tables
	Host Computer Hardware Requirements
	Host Computer Software Requirements
	Client Computer Hardware Requirements
	Client Computer Software Requirements
	Virtual Reality Toolbox Viewer Mouse Navigation
	Virtual Reality Toolbox Viewer Keyboard Navigation
	Orbisnap Mouse Navigation
	Orbisnap Keyboard Navigation

